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Foreword

This final technical report concisely documents the results of a three-year research
effort undertaken by the Schools of Civil and Electrical Engineering at Purdue Univer-
sity. The primary purpose of the work has been to investigate the metric aspects
involved with digital images and digital image processing. The emphasis of the
research has been on metric fidelity of images which is the main thrust of various pho-
togrammetric tasks, dealipvi with high accuracy positional information. Study of men-
suration of digital hard-copy images, which may have been subjected to digital image

" processing algorithms, is needed in order to determine the expected accuracies of metric
information extracted from such images. This called for a cooperative effort between
researchers with specialities in photogrammetry and digital image processing.

The report is divided into three primary areas of research. Not coincidently, these
areas follow the tasks originally proposed for investigation. Quantitative analysis of
digital sampling of images is expounded in Chapter 1. Determining metric criteria for

evaluation of digital image processing techniques is the research described in Chapter 2.
Evaluation of varicus digital image processing techniques is documented in Chapter 3.
More specifically, Chapter I describes the relationship between the pixel size and the
precision and accuracy with which objects can be located by human observers using
digital hard-copy images in photogrammetric plotters. Chapter 2 describes the research -
involved in developing precision edge and cross target location methods which have
subpixel accuracy. Chapter 3 documents the type and amount of metric distortion
caused by various digital image techniques such as compression, filtering, and resam-
pling. The amount of distortion is measured by those methods developed in Chapter 2.

The authors would like to thank Dr. S.J. Mock of the Army Research Office for his
continued support and guidance throughout the period of the contract. Valuable assis-
tance was provided by Dr. V.L. Anderson of Purdue University, and Dr. J.E. Unruh of
the Defense Mapping Agency Aerospace Center who made possible the use of the
Optronics film-writing equipment and provided much useful advice.

During the course of this research, the following contributed directly or indirectly p
to its completion and success: Dr. A.Y. Tabatabai, Dr. J.D. Thurgood, Dr. W. Forstner,
Dr. J.S. Bethel, Mr. M.L. Akey, Mr. D.B. Cantiller, Mr. D. Davis, Mr. M. Meenehan,
Mr. B. Nickols, Mr. W.A. Oren, Mr. F. Paderes, and Mr. A. Sifaw. The authors
express their gratitude to them.

I.
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1. Human Pointing Ability In a Digital Data Base

The efforts of this research were directed toward determining how image processing
techniques affect the metric quality of digital images. As in most research work con-
cerned with image processing, some type of criteria was established to measure or judge
these techniques. Toward this end, the precision of a human observer was established
and this precision was used as a standard of comparison. This section details the abil-
ity of the observer to accurately point to targets with subpixel results. In addition, the
observer consistency as well as inter-observer variability was determined.

1.1. Effects of Sampling

Preliminary work has shown the effects caused by sampling a hard-copy image to
be minimal. This work which was performed by Mikhail and Unruh III quantified the

measurement accuracy in human pointing ability on sampled digital images. In gen-
eral, degradation of the metric accuracy can be attributed to the artifacts produced in a
reconstructed digital image.

Synthesized aerial photographs were formed by processing a combined elevation

and orthophoto data base. These simulated photographs were digitized and written on
film with pixel sizes of 25, 50, and 100 pm. Since the image geometry was completely
controlled, image coordinates of specific targets were calculated and compared with
measured quantities. In addition, two types of targets were used. The first type
appeared as crosses in the data base prior to synthesis and each cross covered many
pixels in the digital image. The second type simulated an artificial image point (such
as a PUG mark) and was constructed by darkening a single picture element (pixel) in
the digital image.

Monoscopic measurements of single pixel targets resulted in a precision of 7 pm.
regardless of pixel size (Table 1). For the 25 and 50 pm pixel spot sizes, monoscopic
measurements exhibited precisions of 8 pm for multiple pixel targets. At 100 pm pixel
size, precision dropped to 17 pm. Inference can be made that as the pixel spot size was
increased, the human observer's precision degraded. However, this occurred only when
the pixel was large enough to become apparent to the observer. In these instances, the
targets appeared "blocky" to the observer.

At 25 and 50 pm pixel sizes, stereoscopic measurements of single pixel targets
showed a decrease in precision to 16 pm. However, for the cross targets at the same .9
pixel sizes, precision remained at 9 pm. This indicated the importance of the back-
ground features to the observer. Precision of measurement for single pixel targets was
dependent on features close to the target. For the 100 pm pixel size, the error
increased to 98 pm for the single pixel targets.

...................... °
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Precision and Accuracy for Monoscople and Stereoscopic Measurements

Single Pixel Targets "Cross" Targets

Precision Accuracy Precision Accuracy

Monoscopic x y x y x y x y
(pm) (pm) (pm) (pm) (pm) (Pm) (pm) (pm)

100 pm pixels 7.5 3.9 9.1 6.5 14.2 11.9 17.7 16.4
60 pm pixels 7.2 3.2 7.9 4.4 9.4 6.8 10.4 7.0 S
25 pm pixels 5.9 3.7 13.8 4.9 5.1 4.7 12.3 4.7

Stereoscopic x y x y x y x y
______(ism) (pm) (pm) (pm) (pm) (pm) (pim) (pmn)

100 pm pixels 152 91 187 101 32 15 35 20
50 pm pixels 22 23 24 24 11 12 12 12 5
25 pm pixels 13 18 13 20 6 9 7 10

Table 1. Precision and accuri.ey for monoscopic and stereoscopic transfer measurements of synthetic

photographs.

These results indicate that hard-copy digital images can provide measurement pre-
cisions of 7 pm or better for monoscopic viewing and roughly 10 pm for stereoscopic
viewing of multiple pixel targets appearing in both images, even with pixel sizes up to
50 pm. Therefore, given that the pixel spot size is sufficiently small, the observer may
treat hard-copy digital images as conventional photographs. In addition, the observer
is able to accurately locate targets in digital imagery with subpixel precision as low as
0.14 pixels.

I
1.2. Measurements of Hard-Copy Images

This phase of research concerned itself with the observer's accuracy in edge and
line location. This work was completed by Thurgood and Mikhail and described in
detail in a technical report [2] and a conference paper (Appendix A). The research
documents the effects of such factors as the observer consistency, inter-observer varia-
bility, and observer precision in the presence of noise. In addition, these results were
retained as a standard of comparison with machine methods.

A simulated test set comprised of 15 image files, was constructed. Each of the 15
files contained 4 targets and one image feature. Each file was 1024 by 1024 pixels and
was written using a 25 pm square aperture. The targets simulated fiducial marks con-
sisting of 5 by 5 crosses and the image features were either an edge or a line. Three
human observers were used to collect measurements using a stereo comparator operated
in a binocular viewing mode.

The precision in measurement of the fiducial marks for observers 1, 2, and 3 were
1.1 pm, 3.4 pm, and 2.2 pm, respectively. These values expressed the 68% confidence

~~~~~~~~~~~~~~.......... ......................... ........,an.... - " --.--, ". . •- .... m"." ,"
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limit of a measurement in x or y. No significant difference was detected between preci-
sion in x and y. However, the differences in levels of precision between observers was
found to be significant. The error in measurement to the edge within each file was
investigated using an analysis of variance model. This allowed the independent evalua-
tion for the four factors: replicate, observer, file, and location. In addition, all edge
errors were calculated as the normal distance to the edge. Certain relationships were
inferred from the results and were shown to be significantly important:

* Single observers were not consistent in edge pointing over time. .

There existed large significant differences in measured edge locations between

observers.
* The differences in measured edge location between observers remained consistent.

* The mean error and standard deviation increased as the edge spread was increased. •

The mean error remained constant as the contrast in the edge was reduced, how-
ever the standard deviation increased.

When noise was added to the edge, edge measurement accuracy was affected, but
not in a consistent manner with respect to all observers.

Edge orientations affected the edge measurement when the angle of orientation was

increased from 0 to 45 °  The edge measurement moved toward the darker side
of the edge when the angle was increased from 0 to 45

* ... . - - - - - - - -
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2. Automatic Extraction of Metric Information

Due to the large variance in the human precision measurements research efforts
were directed toward implementing a machine vision system that would have a lower -0
variance with possibly higher precision. Two target types were used for precision loca-
tion: grey level edges and crosses. Separate algorithms were developed to precisely .

locate each target type. In addition, competing algorithms were implemented to deter-
mine the more robust algorithm.

2.1. Precise Location of Edges

Of particular importance to the image processing community is the ability to
detect and locate grey level edges. To date, few edge detection/location algorithms -

with subpixel accuracy have been developed. Research was completed in this area
resulting in the development of three different types of precision edge locators. The
three algorithms include a grey level moment preserving edge locator, an edge locator
which uses least squares adjustment, and a spatial moment edge locator. The first two
edge locators, the moment preserving and the least squares adjustment, are described in -
the following two subsections. Comparison is made between these two operators in the
third subsection. The spatial moment operator is described in the last subsection.

2.1.1. Grey Level Moment Preserving Edge Location

Tabatabai and Mitchell have developed an edge location method which determines
edge locations to subpixel accuracy. The method uses the grey level moments from a
window of data. These moments are matched to the first, second, and third order grey
level statistics of an ideal continuous edge. Additionally, the operation is insensitive to
multiplicative and additive changes in the grey level data. Documentation of this AL-

research [31 is in Appendix B.

An ideal edge can be characterized by two grey level values h, and h2 where h, is

the lower brightness level and h2 is the higher brightness level. The first, second, and
third order moments (mi) are determined by .

mi =phl + p2 h' ,i=1,2,3 (1)

where p, and P2 are the probabilities or proportions of the grey values h, and h2 that
are present in the data, and are given by

--
Pi + P2=I (2) .

The parameters Pi, P2, hl, and h2 can be solved in terms of the moments, i.e.,

h, = -( ±21/2 (3)
Pi.

Pl ,~0 ..



h2 = r+ P/2 (4)

22
+t

* ....1(."- (8

where

m3 + 2m -3mlm2 ""
s - (7) .

and i -

F 2 =m2 -mi (8) i::

For discrete sampled data, xi, i-=1,2,. ". ,n the moments may be calculated by the .
equation t L

Pn

= i .- x, ,i =1, 2,3 (g).-"

%fj2l

11 the ordered data xi is either mnonotonically nondecreasing or nonincreasing, then
the edge location is

where the first data sample is located at j = .- (all samples have a spacing of one). In -.'.

general, Pl is noninteger, thus the location ,y is a subpixel measurement. It can be 7-
shown that the sample skewness -

M3 + (xi-3M -'""

is equal to the "s in Eq.(7). The conclusio an t be made that the edge location is a

function of sample skewness only. Since the sample skewness is invariant to additive.-:'
and multiplicative changes, the edge location is invariant to the same. ....

• In the presence of additive, zero-mean Gaussian noise, the edge location is biased L ..

..- toward the center of the window. This is verified by empirical methods in addition to
If he derived theoretically. cr

The one-dimensional edge operator can be extended to two dimensions by using

the grey levels within a circular window. The sample moments areI plh + p~h ,k--0,1,2,3 (12)

where t t.l.'.',

2-

",'-_,:.general, p"" """: .". " - -" , is .. ","..n.on .i.".t.eg.".'r, ':: thu the ', location, "-" "." a: "/',"-:., measurement .- It-",". can .", be ,--?-'...""
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A1  (13)

and ---.

P2 1 P1 (14)

A, is that area of the circle covered by the grey level hl. The values of pl, P2, hl, and
h2 can now be obtained from Eq.(3) - Eq.(8). For a circle of unity radius and an arbi-
trary angle 0 < /: 5 r/2, the area A is given by

A =/- '-sing (15)

2

Combining Eq.(13) and Eq.(15) and allowing

p = min(ppp2) (16)

results in

/- -sin2/3 = irp (17)
2

This result is transcendental and a numerical approximation is needed to solve for/,.
However, since this equation is extremely smooth (derivatives of all orders exist), a sim-
pie look-up table method which uses linear interpolation is sufficient to obtain quick
and accurate results. The length to the edge is simply t.

9 =cos/# (18)

As mentioned before, the length is a subpixel result and is invariant to additive and
multiplicative changes in the grey level data. "

2.1.2. Edge Location using Least Squares Adjustment

A process for edge location using a least squares approach has been developed by
Thurgood and Mikhail [4,51 (and Appendix A). This approach results in very precise

locations when the initial parameter estimates are good.

Let f(s,t) represent an ideal picture function. In this case, f(s,t) is the ideal edge
function. If the picture function is image using a linear, spatially invariant system with
a normalized point-spread function p(s,t), the output of the system is simply the convo-
lution of f(s,t) and p(s,t). Let the random variable (s,t) be the output at coordinate a

* s,t), : -.

00

9ls,t) = f f f(l,v)p(x- ,t-v)dfdv
-00 ,"-

°

a

•I.- .
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= f(s,t) * ps,t) 11"

where * denotes the convolution operation. Given that f(s,t) can be parameterized, the
above equation can be transformed into a single condition equation for the model
known as Adjustment by Indirect Observations. The set of equations (one equation for
each 1(i,j)) can be solved by forming normal equations. The transform is determined
by optimizing the coefficients of the convolution of the ideal picture function and
point-spread function. Initial estimations of these coefficients are used and a correction
matrix is produced. This is repeated using the correction values until the estimates of
the parameters of ideal picture function converge.

Let f(s,t) be completely characterized by a set of u parameters X over the region of 0-
interest, then Eq.(19) may be written as

f(s,t) - f(s,t;x) * p(s,t) = 0 (20)

or for simplicity

9(st) + F(x) = 0 (21)

where F(x) = -f(s,t;x) * p(s,t). The picture element (i,j) which is a sample of I(s,t) at
s =si, t = ti may be written in the linearized form of Eq.(22) as

9 + vi + (ij A -Fi )  (22)

where 0.° is the initial estimate for the observation, Vii is the measurement residual, "-
is the set of partial derivatives of Fij(x.) with respect to the parameters, evaluated at
x = x?, &O is the set of initial parameter approximations, and A is the set of corrections -PAW
to the parameter approximations. Equation (22) represents a single condition equation
for the model known as Adjustment by Indirect Observations. If the region of interest

contains n pixels, the total set of condition equations may be written using matrix
notation as

10 + -V + = -(x °) (23)

The stochastic information associated with the measurements is characterized by the
covariance matrix F.. The corresponding cofactor matrix Q =(I/o2)F is often used for
convenience, with o,2 being the reference variance. The corrections A to the parameter
approximations may then be calculated by solving the normal equations

Bt Q-1 BA = a tQL (24)

where " = -o + F(O)I. The nonlinearity of the condition equations requires an itera-
tive adjustment procedure, relinearizing at updated parameter values and continuing L
until the solution converges.

The ideal picture function, f(s,t), can represent any picture feature that can be
parametrized. For a one-dimensional edge, the parameters are the lower step edge

I -

... .. ..- .. .- ... : . : .. . . . .. . . . . . . . . . . . . ... .. . . ... '-.: .



the line width, w.

Parameters of the point-spread function may also be estimated if the form of the
spread is known. This research has considered two types of spread functions, rectangu-
lar and Gaussian. Given that the point-spread function is centered over each pixel
both functions can be parametrized by a single parameter d.

2.1.3. Empirical Analysis of Moment and Least Squares Edge Locators

Tests using both edge locating algorithms were carried out on sets of simulated
one-dimensional signals containing various amounts of random noise 121. In general, the
precision of the edge estimates decreased as the noise level increased. At a noise-to-
signal level of 10%, both algorithms achieved root mean square errors of less than 0.04
sampling intervals in data with an edge spread of four sampling intervals.-

In addition, the two-dimensional test base used in the human observation testing
were used. For the least squares implementation, errors in edge location estimates were

less than 0.050 pixels for symmetric ramp-type edges with high contrast. Angle errors
were typically less than one-half ot a degree. Errors up to 0.20 pixels occurred in non-

symmetric edge data and were consistently to the lighter side of correct edge location.
These errors were a result of fitting a non-symmetric type edge function to the modeled
symmetric function. Additionally, large errors were recorded from noisy data.

The grey level moment preserving method and Hueckel method 16,7,81 were
applied to the same data. These methods require no iteration as in the least squares
approach. However, both methods show a bias in the presence of noise which is
greatest away from the center of the window of data. Therefore, both methods were
implemented using an iterative procedure to ensure that the edge occurred within one
pixel of the center of the window. Pn

Errors in the edge location estimates were less than 0.050 pixels for high contrast,
symmetric edge data. The Hueckel operator tends to point towards the lighter side of
the edge when compared to the grey level moment preserving method. Larger errors
were associated with asymmetric edges and with files which contained large amounts of

noise. For noiseless cases, the two operators estimated orientation nearly perfectly with
only one exception at 22.5 * with error of 0.8 d

2.1.4. Spatial Moment Based Two-Dimensonal Edge Operator

An edge detector and locator which has been developed by Reeves, et. al. (Appen-
dix C) matches a circular section of an image to an ideal step edge model using two-
dimensional moments. This method requires no iteration and can locate edges to sub- I



pixel accuracy. In addition, this method is much simpler to implement than the
Hueckel operator and appears to allow more accuracy and noise immunity.

An ideal edge model is characterized by four parameters h, k, I and 0. The edge is
a straight line which separates two regions of constant grey values. The lower level has "-4""

height h and the upper level is k higher than the lower level. The angle which the edge
makes with the y axis is 0 and I is the distance from the center of the disk to the edge.

The moments of an image f(x,y) of order p +q are defined by

Mpq = f f xPyqf(x,y)dxdy (25)

The disk is defined to have radius of one. Thus, the limits of integration are the unit
circle i.e., VX2? < 1.

A rotation of the disk by an angle 4 changes the moments as specified by

Mpq -lrq-,,cos O)P-r+s(sin 4 )q~rs Mp+q-r",r+g (26)M p q " q ( 2. !-.

r=0 s=0 --

The angle 0 which is the angle of the edge is determined by

0 tan-  (27)

In order to determine the other edge model parameters, the moment set is rotated by
the angle 0 until the potential edge is aligned with the y axis.

The location of the edge, 9, may be derived from the rotated moments. The
moments may be specified in terms of h, k and I by integrating.

M = 2h f Vl/-x2dx + 2k f V'i-xdx

hir + .!" _ k sin-(Q) - k9Ql'- 2  (28)

' l _xid ~f i-X2d•, .

M = 2h f x vidx + 2k x-. dx

3k 
(2)

M = 2h f x2 Vi 7 xdx +2k f x2 1/'-:dx
-1 I!

- .- .. .... . . - * - , ' ,....... . • • , . * , " . - . . . - . . , ' ' o * - - . . .-... .
".
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- I + ILE+-"A
4 8 2

kJ
Sk (V 2 + sin-l(#) (30)

4

Equations (28), (29) and (30) may now be combined to solve for 9, i.e.

= 9 M o- (31
4 4

4M20'- MOO
3M0  (32)

The ideal edge that is fit to the data does not allow for the quantization effects due
to finite pixel size in the real data; i.e., the gray value is assumed constant over each
pixel in the real data. This introduces a bias error in the calculated edge location. - -a

Although this bias appears significant, the calculated edge location versus true edge 1.

location is always a monotonic function, and thus a table look-up procedure can be
used to subtract this bias effect and give perfect edge location results when no noise is
present.

The edge operator was applied to noisy edge data. In the presence of noise, the .
operator was unbiased and performed quite well. Most edge locations (68%) were
found to within 0.2 pixels of their correct location when the center of a circular window
of ) pixels was within 2.5 pixels of the edge and the signal-to-noise ratio was 20 db.
Unfortunately, this edge operator was developed at a different time than the previous
two operators and therefore was not evaluated against them.

2.2. Precision Cross Target Location
• .-. '

The main task of this effort was composed of two steps: the detection and approxi-
mate location of the cross target, and the precise determination of the center of the tar-
get using the least square algorithm. Detailed documentation of the first step can be
found in Appendix D and Appendix E. Detailed documentation of the second step can
be found in the aforesaid appendices and in reference 19].
The approach that was taken incorporated an automated procedure based upon pattern
recognition and feature extraction techniques which would scan an entire image and
produce the initial locations of all crosses. These initial values were then used by the
least squares algorithm which modeled a cross feature to determine precise cross loca-
tions.

'* -..
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2.2.1. Pattern Recognition of Crosses

A method has been developed to detect and recognize cross targets in digital aerial
imagery. The method accomplishes these tasks by extracting two major features from
the ground data. Local grey level maxima which correspond to possible cross targets
serve as the detection feature. The Fourier descriptors of the contour of these targets
provide recognition of the cross as well as approximate location, orientation, and cross . -

size.

To implement local maxima detection, two processes are needed. First, to insure
that true bright regions are detected and not those maxima that are attributable to
system noise, atmospheric effects, etc., a circular convolutional low pass filter is applied
to the data. Assuming that the size of the convolving filter window is smaller than the
smallest expected cross, the grey level structure of the filter cross can be viewed as a
local maximum in two dimensions. These points serve as input to the recognition
phase of the algorithm.

The recognition phase accomplishes two tasks. First, the process discriminated
buildings, road intersections, and other physical objects from crosses since these objects
may be two-dimensional local maximums. Second, given that the object is a cross, the
process determines the location, orientation, and size of the cross.

Recognition is accomplished using Fourier descriptors, to obtain the Fourier
descriptors of an object, the original unfiltered image must be grey value thresholded to
yield a binary image. If the threshold is chosen correctly, the object will be segmented
from the background data. Typically, many thresholds are tried to successfully seg-
ment the data. A Fourier transform is applied to the contour or boundary of the seg-
mented object to produce the object's Fourier coefficients. The coefficients (descriptors) P-
are normalized for comparison to the coefficients of a "true" cross. If the descriptors
match those of a cross within a specified accuracy, the object is classified as a cross. If
the descriptors do not match, another grey level threshold is selected for segmentation
until the descriptors match or until all the possible thresholds have been exhausted in
which case the object is rejected as a cross. In addition, the Fourier coefficients deter- .

mine location, orientation, and size information.

2.2.2. Location using Moments

In general, the cross' grey level heights (h, and h2) are distributed among neighbor- p
ing pixels according to the location and orientation of the cross. Since the grey values
of the pixels hold much of this information, a process which uses the grey levels of the
cross as well as the general shape should do well in estimating location and orientation.
The two-dimensional grey level moments meet this requirement.

A window of data is extracted from the original image. The location of the center . "
of the window is determined from the Fourier descriptor location results (recognition -. '"- "

routine). The two-dimensional moments of the window are calculated. The normalized ..-.

. . . . . . . . .



-12-

first order moment in x and in y, respectively, determine the center of mass of the win-
dow. Since the cross is symmetric, this is the final estimate of the cross location. After
the moments are translated to this location, rotational moments are used to determine
the angle of the cross. Finally, the background grey level is determined by the average
grey level around the cross, not including the cross, and the grey level of the cross is
estimated by the grey level at the center of the cross.

2.2.3. Location using Fourier Descriptors

This method of determining location is similar to that used in the recognition
phase of the algorithm. To determine accurate location and orientation of the cross,
many grey level thresholds are used. Each grey level threshold produces a contour and
therefore an estimate of the cross's location and orientation. Of those thresholds that
produce acceptable Fourier descriptor results, only the best descriptor results are
retained. Since the Fourier descriptor error measures the match to an ideal cross, the
error may be used as a confidence number. The lower the error, the greater the
confidence. This confidence number may then be used as a multiplicative weight with L
which to multiply the location result. Likewise, the final orientation angle is estimated

*. using these weights, also.

Each location determined by the Fourier descriptors is a sub-pixel result. The pro-
cess of using a weighted average of each contour center results in a surprisingly good
center location with much more credence than from only one Fourier descriptor result.
This technique is remarkably similar to the moment technique in one important way.
The grey level moments use a continuum of grey values summed according to the
moment basis functions to produce the center of mass, and thus the center of the cross.
Likewise, the Fourier descriptors use a continuum of grey level thresholds to produce
different centers of contour locations. These locations are weighted and summed to
produce the location of the cross. However, only those Fourier descriptors results
which match a cross are kept. This selective process removes those contours which are
greatly affected by noise. The grey level moments, on the other hand, cannot be mani-
pulated in this way, and must use all grey values.

2.2.4. Evaluation using Arizona Data Base

A test image was obtained by generating cross targets on a digital image using the
Arizona test data. This test data was derived from a digitized stereo model formed by
two nearly vertical images taken in October 1966 near Guadelupe, Arizona. A cross
was generated by integrating over that portion of the pixel which contained any part of
the cross. This process is identical to sampling with a square aperture with area of one
pixel. The cross targets were then superimposed on the digitized image.

A 512 by 512 segment of the digital image was used. Twenty-four cross targets
were randomly selected and placed on the image as follows:
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* Cross placement was done at arbitrary sub-pixel locations.

, Cross sizes with aspect ratios of 1 x 7, 1 x 10, and 1 x 13 were used. The aspect
ratio related the width of one leg of the cross to the total length of the cross, as for
example, I unit to 10 units.

* The widths ranged from 1 pixel to 1.5 pixels.

* The crosses were arbitrarily rotated at various orientation angles.

Additionally, zero-mean Gaussian random noise was added to the crosses with a stan-
dard deviation similar to the standard deviation of the image background around each
cross. Two data sets were created; one where a standard deviation of 25% of the back-
ground noise was added to the crosses to simulate fiducial marks and one where no
noise was added to simulate reseau marks.

Both the moment location and Fourier descriptor location routines were used to
precisely locate the cross targets. All targets were detected with no false targets found.
The average miss distance, , for all 24 targets in each image was calculated. The miss
distance p is given by

p /ATX 2 -+ Ay2 (33)

where Ax is the error in the x position and Ay is the error in the y position. Thus, p
represents the undirected distance between the actual cross position and the algorithm's
determined cross position. As shown in Table 2, the moment location process exhibited
average miss errors of 0.255 pixels and 0.241 pixels for the no noise and 25% additive
noise cases, respectively. On the other hand, the Fourier descriptor method showed a
significantly lower error of 0.073 pixels and 0.107 pixels for the no noise and 25% addi-
tive noise cases.

Moment and Fourier Descriptor Method Error

Method Noise

0% 25%

Moment 0.255 pixels 0.241 pixels

Fourier Descriptor 0.073 pixels 0.107 pixels

Table 2. Mean Location Error for Moment and Fourier Descriptor Methods.

These results were then passed to the least squares algorithm described in the next see-
tion.

.. ?
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2.2.5. Location using Least Squares

The least squares adjustment model for the fitting of a cross-type feature to image
data was incorporated. The procedure followed in this routine was to construct the
desired feature as a set of four rectangular components, which allowed for the con-
venient determination of partial derivatives by summing over all components. A total
of five parameters were estimated: h, the average background signal value, h2 the aver-
age target signal value, x,y geometric center of the target, and 0 the orientation of the
target. The quantities W, the width, and L, the length, of the cross were assigned
approximate values based on the average scale of the imagery and the size of the tar-
gets in the data base. The least squares approach does allow for the solution of all
quantities, including those parameters defining the spread function. However, for these
tests, the goal was to demonstrate the ability to extract positional information; the
problem of determining precise target dimensions was not a primary goal.

The digital image files generated for the purpose of measuring the positions of
crosses made use of the simulation package SIM, previously developed at Purdue
University and described by Mikhail et. al. [10,11), with the following characteristics:

* SIM makes use of an augmented digital data base containing both elevation infor-

mation and quantized density values from a digitized orthophotograph.

* SIM uses a bilinear interpolation in elevation and in grey shade, but both can be
redefined easily.

* The data base used contained 1778 row by 1117 columns each, representing the

Fort Sill area of Oklahoma.
* It is possible to superimpose artificial targets in the terrain model by assigning new

grey shade values to specific data base elements.

In this way, such targets are included in the image synthesis process, and appear as
other natural features in the resultant digital image file.

In one experiment, a set of nine image files were generated. The exterior orienta-
tion was varied, by assigning combinations of three different values of the primary rota-
tion w and three different values of tle tertiary rotation ic. Thus i took on values 0,
20 and 45 °, and w was 0", 5 a , and 15". Within one file eight cross targets were

imaged. In all cases, the ratio between the average pixel spacing and the data base ele-
ment spacing was very roughly 1.0. Therefore the approximate dimensions of the
crosses in the resultant images were 5 pixel's length by 1 pixel's width.

Two types of spread functions were used, the rectangular and Gaussian. The
range in root mean square errors in x or y is from 0.033 to 0.086 pixels, with one case
yielding the relatively high value of 0.394. In this particular instance, the initial
approximation for 0 was 0 , when in fact the true value should have been close to x
(45). This poor approximation appeared to have allowed convergence of the adjust-
ment to a local minimum, and resultant residual in the final estimate was on the order
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of 45 in orientation and 1.0 pixel in position. The approximation was calculated by a
very simple procedure employing template matching. The use of pattern recognition
and feature extraction algorithms for deriving approximations totally alleviates this
problem. -

The least squares algorithm was next used on the Arizona test data with the initial
approximations supplied by the moment location method and then repeated with the
Fourier descriptors method. Using approximations from both processes, the rms loca-
tion errors were reduced in x to 0.05 pixels and in y to 0.03 pixels. Even when the
moment process resulted in a poorer location than the Fourier descriptor process, the
least squares routine still converged to virtually the same result. However, the least
squares routine required at least one more iteration per data point when it started with
the moment process approximations. s

Many features in aerial images are smaller than the imaging aperture used to digi-
tize the scene. Yet, these digitized features can still be located by observers. If here-
fore, the intent of the next experiment was to determine if objects with subpixel
features could be accurately located. :

A test image was constructed with twenty-five thin crosses superimposed on the
Arizona data base. In order to simulate thin features, the cross leg widths ranged from
0.5 to 1.0 pixels and the aspect ratios were x7, lxl0, and 1x13. The Fourier descrip-
tor algorithm was used to detect these crosses in the image. Of the original 25 crosses,
only 17 crosses were detected. Due to the thinner features, recognition was not esta-
blished by the local maximum routine or the Fourier descriptor routine for eight
crosses. However, no false detections were made. Increasing the number of detected
crosses by lowering the local maximum or Fourier descriptor thresholds will also
increase the number of false targets.

Of those crosses detected, the Fourier descriptor method resulted in root mean
square errors in X of 0.335 pixels and in Y of 0.317 pixels (Table 3). Using the Fourier
descriptor results as initial approximations, the least squares algorithm improved the
location results to 0.048 and 0.036 root mean square error (pixels) in X and Y, respec-
tively, as shown in Table 3.

Location of Thin Crosses

Method X rms (pixels) Y rms (pixels)

Fourier Descriptors 0.335 0.317

Least Squares 0.048 0.036 - - -

Table 3. Location results on crosses with subpixel features.

..-- . . ... ..... .. .. .
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3. Effects of Image Processing on Geometric Fidelity

Provided that the Fourier descriptor-least squares algorithm exhibited minimal
location errors, digital image processing techniques were monitored for their effect on P
geometric fidelity. The types of processing work that were studied included: image
compression, image enhancement, and image resampling using various interpolation
functions.

3.1. Effects of Digital Image Compression -- Cosine Compression

For each of the two Arizona test images, a two-dimensional adaptive cosine
transform compression scheme was applied. The image was sub-divided into 16 by 16
sub-blocks and the coefficients resulting from the 2-D Direct Cosine Transform were
quantized using a bit assignment scheme based on the energy in each block [121. The
quantization levels were determined from the desired compression. The resulting
images were then reconstructed using 8, 2, 1, and 0.5 bits/pixel. For each of the eight
possible image files described above, two different processing procedures were used:

• An algorithm based on Fourier descriptors and moments was used for detection I -

and location, followed by the least squares algorithm for precise positioning.

* An algorithm based only on the Fourier descriptors was used followed by the least
squares algorithm.

In general, as the number of bits decreased the location of the crosses changed
implying geometric shift. Furthermore, some of the crosses lost an entire leg due to the

sub-division performed by the compression. In this event, the algorithm did not recog-
nize these crosses and therefore the total number of crosses was reduced. Processing of
the original images showed that the location of a cross could be achieved with a preci-
sion of 0.03 - 0.05 pixels. Compression to 2 bits/pixel led to 0.06 - 0.13 pixels; I
bit/pixel led to 0.16 - 0.18 pixels; and 0.5 bits/pixel led to 0.36 - 0.71 pixels. These
results are summarized in Table 4 for easy reference.

Precision after Cosine Compression

Compression (bits/pixel) Precision (pixels)

8 (no processing) 0.03 - 0.05

2 0.06.0.13

1 0.16-0.18

0.6 0.36- 0.71

Table 4. Precision results after cosine compression at various compression levels.

.. ..
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3.2. Effects of Mean and Median Filters in the Presence of Noise

In the previous section, the test data consisted of artificial cross data embedded on
real terrain data. The noise statistics of the terrain data due to the system and atmos-
pheric effects were unknown. To better isolate the effects of processing, new test data
was artificially generated with known noise statistics. The base image consisted of 49
crosses with the aspect ratio 1 x 7 oriented at random angles and placed at random
sub-pixel locations on a flat field. The width of the legs of each cross was set at 3 pix-
els, thereby making each cross 21 pixels in length. This larger size was necessary to
prevent the median filter from removing large portions of the crosses. Three additional
images were created by adding varying amounts of independent zero-mean Gaussian
random noise to this base image. The standard deviation of the noise was set at 20%,
40%, and 60% of the center step height (grey value) of the cross.

On each of the above images, eight separate processes were performed. These
processes included a 3 by 3 mean filter, a 3 by 3 median filter, a circular mean filter
with diameter of 3, and a circular median filter with a diameter of 3. The above
processes were repeated using 5 by 5 window and diameters of 5 pixels. To the
authors' knowledge, the circular median filter has yet to be introduced in the literature.
For this reason, a brief discussion of the circular median filter is given in Appendix F.

To the four test images, the Fourier descriptor precision method was applied. This
method was preferred over the moment method due to it's superior performance on the
Arizona test set. Due to the large cross size, the least squares algorithm was not
applied to the test data. Notably, for the zero noise case, the average error is 0.061
pixels. In general, due to the off-pixel boundary placement of the crosses and the arbi-
trary angle of each, the Fourier descriptor location result was not identically zero.

Median Results For the 20% and 40% noise cases, the median filters improved the
location result only slightly in comparison with the non-filtered result (Table 5).
Median filtering in the 60% case resulted in a marked reduction in the error by almost
40%. All the cases have shown virtually no difference in the location result between
the square and circular median filters. Thus, the differences between the two types of
median filters at size 3 on the geometric accuracy was minimal at most. For the size 5
case, filtering caused deterioration, as there was a slight increase in location error over
that of the non-filtered data. The window size was at times too large for the feature.
As the noise level was increased, the resulting location error was increased. Only in the
highest noise case did the median filter increase the accuracy. Additionally, the circular
median resulted in less error than the square median. This can be attributed to the

* additional bias the square median filter had on orientation.

7"
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Mean Location Error (pixels) for Synthetic Test Image

Before Median Mean

Noise Square Circular Square Circular

3x3 5x5 d=3 d=5 3x3 5x5 d=3 d=5

0% 0.061 0.078 0.091 0.078 0.081 0.026 0.043 0.026 0.033

20% 0.108 0.093 0.114 0.094 0.105 0.087 0.118 0.081 0.124

40% 0.207 0.188 0.255 0.184 0.239 0.184 0.258 0.185 0.250

60% 0.404 0.249 0.359 0.242 0.304 0.220 0.300 0.214 0.279

Table 5 Mean location error in pixels for synthetic test image using Fourier descriptor method.

Square and circular median and mean filter results are shown using window sizes of 3 and 5

pixels in the presence of various amounts of noise.

In general, given that the feature was much larger than the window size of the

filter, the median improved the accuracy of the Fourier descriptor location result on .

noisy data. However, when the feature was not larger than the window size, the P
median filter appeared to distort the feature and the accuracy of the Fourier descriptor

location result was reduced.

Mean Results For all cases, the location results of the Fourier descriptors were better

after using the mean filter than prior to this preprocessing (Table 5). Notably, for the

zero noise case, the location was improved greatly. This was not seen in the median

case where in only the noisier cases did the location result improve over that of the

unprocessed result. Additionally, all cases of the mean filter of size 3, the location

result was better than the result for the median of the same size. Also, there was no

discernible difference in location accuracy between the square and circular means.

Therefore, smoothing the data improved the accuracy of the Fourier descriptors and

should be considered as a preprocessing operation for the Fourier descriptor method.

3.3. Effects of Resampling Using Various Interpolation Functions P

The effects caused by resampling on metric accuracy was studied. A linear resam-

pling scheme was used with no scaling of the coordinate axes. In a continuous domain,

all distance measures are preserved after this type of transformation. This transforma-

tion can be preformed by rotating and translating the original image. In practice, the p

inverse transformation is performed on the new image position to determine the

corresponding old image position. The calculated old image position in general is not

located on a pixel boundary. Various interpolation functions have been proposed to

extract the correct grey level value from this non-integer position. Three common

interpolation functions were considered: biconstant (nearest neighbor), bilinear, and

bicubic. The biconstant function merely uses the closest pixel's grey value. The bil-

inear function interpolates from the four nearest pixels' grey values. The bicubic

,-I .-
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function incorporates the sixteen nearest pixels' grey values.

The Arizona test data was resampled at various rotations, and horizontal and vert-
ical translations. The translation intervals were 0.125, 0.25, and 0.375 pixels and every
combination of these intervals in X and Y were performed to yield 9 different translated
images. The rotation intervals were 12.5 0 25 0 and 37.5 0 and each rotation interval
was applied to the nine translated images. This yielded 27 different resampled images.
The transformed images contained 19 to 22 crosses depending on the amount of rota-
tion. Therefore, the number of crosses that were resampled was at least 513. This pro-
cess was performed for each interpolation function. The precision location algorithm %

using Fourier descriptors was applied to each image. The mean error horizontally and
vertically was tabulated as well as the mean radial error or miss distance p for each
interpolation function. Table 6 summarizes the results.

Locations Results (pixels) with various Interpolation Functions.______

Interpolation Mean 12.5. 25.00 37.5 All

Biconstant x -0.0317 -0.0359 -0.0479 -0.0383
y 0.0067 0.0014 0.0289 0.0121
p 0.1629 0.1795 0.1952 0.1787

#_ crosses 202 188 186 576

Bilinear x 0.0018 -0.0108 -0.0349 -0.0141
y 0.0363 0.0457 0.0469 0.0427
p 0.1289 0.1461 0.1434 0.1392

# crosses 207 189 189 585
Bicubic x 0.0017 -0.0136 -0.0430 -0.0177

y 0.0552 0.0762 0.0738 0.0680
p 0.1638 0.1823 0.1858 0.1769

# crosses 207 189 189 585

Table 6. Location results (pixels) after using the three interpolation functions: biconstant, bilinear,
and bicubic. There are nine different translations for every rotation angle given in the

table. p'.

The mean errors in the horizontal and vertical directions for all interpolations were vir-
tually zero and therefore show no significant bias. The values appear to show the X
error to favor the negative side of the correct position and the Y error to favor the posi-
tive side of the correct position. However, since the Fourier descriptor method does not
give perfect location results in noiseless data, it is felt that this small bias could stem
from the location method rather than factors associated with the interpolation func-

tions. L°-
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For all cases (X,Y,p), as the rotation angle was increased the location error
increased. Since the digitization and interpolation schemes are based on a square grid

structure, it can be inferred that the location error increases as the rotation approaches S
45 * and then decreases as the angle approaches 90 This observation suggests that if
the interpolation functions were implemented using a circularly symmetric window,
location error would not be influenced by the rotation angle.

Lastly, the radial mean errors for biconstant and bicubic interpolations were very g
nearly the same at all rotations. In addition, the radial mean accuracy was significantly
better using the bilinear interpolation function and was consistently better at all orien-

tations. Since bicubic interpolation uses more information than bilinear interpolation
(16 grey levels as compared to 4 grey levels), it was assumed that bicubic interpolation -

would produce less metric distortion. This now appears not to be the case. From these
results, position information can best be obtained only from the four nearest pixel loca-
tions. Thus, bilinear interpolation produces less metric distortion than either bicon-
stant or bicubic interpolation. However, more work is needed to understand the factors
underlying this result. I.

.~~~° .. . o...
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PHOTOGRAMMETRIC ANALYSIS OF DIGITAL IMAGES "

J. D. Thurgood and E. N. Mikhail
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ABSTRACT 2

Recent experiments using hardcopy measurement of digital
images have shown that accuracies significantly less than
the pixel size are attainable when pointing to well-defined
features such as dots, crosses and edges. In addition,
digital processing techniques for the automatic extraction
of feature location to subpixel levels have been applied to
simulated aerial images with significant results. This
paper describes approaches to the photogrammetric analysis
of digital images which investigate the role of the human
observer and digital processing in the extraction of precise
geometric information.

1. INTRODUCTION

The growth in the use of digital images has been accompanied
by the development of digital processing techniques in many
areas: from image enhancement and image coding, to pattern
recognition and image classification procedures. From the
photogrammetrist's point of view, the primary concern must
be the geometric fidelity of the image, that is, the utility
of the stored data for the extraction of geometric
information. This information takes the form of image
coordinates, measured lengths and areas, or corresponding
quantities in a three-dimensional space formed using
overlapping imageries with different perspectives. However,
the bulk of recent work in digital image processing has
dealt with gray shade(density or intensity) values, but not
particularly with the effect of changes in gray shade
distribution on the ability to extract precise metric
information. As digital images become increasingly
available in the form of either directly-acquired records or
as digitized photographs, it is important that measurement
processes be developed commensurate with the full potential .
of the image data.

Makarovic and Tempfli (4) considered the photogrammetric
problem in terms of both pictorial and metric requirements,
using the sampling theorem as a basis for the former, and
using the sampling interval as a basis for the latter.

When considering specific image features such as edges and
lines, there do exist well-known digital processing
techniques for their detection and location to pixel levels
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(7). Other research (1,2) has developed theoretical bounds
on the variance of positional estimates using digital
images, without actually implementing the necessary
algorithms to solve the estimation problem. The method
devised by Hueckel (3) has been until recently the only
means of obtaining edge and line location estimates to
subpixel levels, without applying interpolation.

Recent work by Unruh and Mikhail (10) involved the
measurement of digital images written on film with pixel
sizes of 25, 50, and 100 gm. The digital image files were
synthesized aerial images, produced using the program SIM.
This program makes use of a digital terrain model containing
gray shade information to generate images exhibiting all the
perspective characteristics of an aerial image, but in a
digital form (8). SIM allowed the introduction of
artificial image targets, either by modification of the gray
shades in the terrain model, or by superimposing targets in
the image itself. Results from these and similar
experiments carried out with digitized aerial photographs,
indicated that hardcopy digital images could provide
measurement precisions of 7 jm or better for monoscopic
viewing and roughly 10 jum for stereoscopic viewing of
targets appearing in both images, even with pixel sizes of L
up to 50 gm.

This paper will first review a new method of locating an
edge to subpixel levels using moment preserving, developed
at Purdue University by Tabatabai and Mitchell. Secondly,
an approach to the image modelling problem which uses the
method of least squares adjustment to estimate feature
position is described. Then summaries of two experiments
being conducted at Purdue University into the geometric
analysis of digital images will be given: one involving the
hardcopy measurement of images containing edges, and another
implementing the least squares algorithm to automatically
locate cross targets in simulated aerial imageries.

2. EDGE LOCATION USING MOMENT PRESERVING

The method of edge location by moment preserving is
described in more detail in (8). -

For simplicity, let us first consider the one-dimensional
case, in which an attempt is being made to model a set of
data to an ideal step edge as shown in Figure 1. The three
parameters defining the edge are: h, the signal value below
the edge, h2 the signal value above the edge, and X the
location of the edge. Moment preserving is used as the
criterion of best fit of a set A of n data points to the
ideal edge f(s). Rather than solve directly for X, the edge
location is defined as k+%, where k is the (unknown) number
of samples below the edge. Since there are three unknowns,
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we set the first three sample moments equal to those
associated with the ideal edge, that is:

k j n-k j
= - h, + - h2  for j = 1.2,3 ................ (1)

n n
where

in j
ij = - Al............................................ (2)

n i

is the j-th sample moment, and j is a power.
The three equations given by (1) may be solved directly in a
closed form. In particular, the solution for k is given by

k = (n/2) {1-c//v 2  . ............................... (3)

where

c =

is the skewness of the data, and 0
2== i 2- 1

2 .

From equation (3) it is clear that k need not be an integer,
and therefore sub-pixel edge location is obtained directly. p
This method of edge location assumes that the data consists
of monotonically increasing values. This will not be the
case if noise is present, and preprocessing of the data to
smooth out oscillations due to noise has been shown to
improve results by a significant amount. Extension of the
model to two dimensions necessitates, in addition to moment
preserving, calculations to determine the center of gravity
of the image data, in order to solve for the two parameters
which now define a straight edge passing through the image.
Moment preserving is very simple to apply, and yields
unbiased estimates if the edge lies near the center of the
area considered. Biased results may be overcome by
recentering the area to be modelled after an initial
solution.

3. LEAST SQUARES ADJUSTMENT IN IMAGE MODELLING

Let f(s,t) represent the output of a perfect imaging system,
that is, the ideal picture function. Consider next a
linear, spatially-invariant imaging system with a normalized
point-spread function p(s,t) assumed known. Then let J(s,t)
denote a random variable representing the measurement at
sampling position (s,t). We may model the measured quantity
using the convolution

I(s,t) = f f(e,77) p(s-e.t-n) ddn (.................(4)
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Consider now a set of u parameters x which completely
characterizes f(st) over the region of interest. Equation
(4) may be rewritten as

(s,t) - f(st;x) • p(st) = 0 ..................... (5)

where * denotes the convolution operation.
Then for the ij-th picture element which is a sample of
(s,t) at s=s1 , t-tj, we may write a linearized condition
equation of the form (dropping s,t for simplicity)

1j o  + vq + B A = - Fq(x ° )  ......................... (6)

where Amo is the initial estimate for the observation,
vq is the measurement residual,
Fq(x) = - fU(x) * pU,

is the set of partial derivatives of Fq(x) with
respect to the parameters, evaluated at x=x0 , S

x° is the set of initial parameter approximations, and
A is the set of corrections to the parameter

approximations.
Equation (8) represents a single condition equation for the
model known as Adjustment by Indirect Observations. The .

total set of equations can then be solved by forming the .
normal equations in the conventional manner (5).

Tests using both edge-locating algorithms were carried out
on sets of simulated one-dimensional signals containing
random noise at various levels by these authors (9). In
general, the precision of the edge estimates decreased as
the noise level increased. At a noise-to-signal level of
10%, both algorithms achieved root mean square errors in X
of less than 0.40 sampling intervals, in data with a spread

* of four sampling intervals across the edge.

4. HARDCOPY MEASUREMENT OF IMAGES CONTAINING EDGES

4.1. Data generation

In order to allow the fullest control over the geometric and
densitometric nature of the images to be measured, simulated ,. -

data was generated which represented a set of fifteen
digital image files. Each file consisted of a two-
dimensional array of size 1024 by 1024 pixels, containing a
gray shade distribution modelling a main image area and a
set of four cross fiducial or reference marks. The
functions defining the edges were selected in order to allow
the effects of various edge characteristics to be studied:
Width (0,2,4 pixels), Type (steprampexponential,raised
cosine), Contrast (highlow), Noise (0,20%,40%), and
Orientation (0,20°,450).
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The fifteen files were written on film as a single image,
shown in Figure 2, using an Optronics precision film-writer
located at DMA/AC St.Louis with a 25gm square aperture. We
shall refer to each image file as an individual frame. The
data was written so that the gray shade values corresponded
to a roughly linear scale in density in the final film
positive.

4.2. Measurement of the hardcopy image

Measurements to the reference marks and to the edges were
performed by three observers. A total of three replications
were made of the whole experiment. The measurement
instrument used was the Zeiss PSK Stereo Comparator,
operated in the single-plate binocular viewing mode. Within
one frame a total or ten pointings were made: one to each of
the reference marks and three each to two distinct locations
on the edge itself. The total set of data acquired was
comprised of 1350 pairs of coordinates.

4.3. Preliminary processing and analysis of measurements

The preliminary analysis of all data gathered included the
estimation of precision associated with the ability of each
observer to measure the fiducial marks and the
transformation of the comparator measurements into an image
reference coordinate system.

Using repeat measurements, an estimate of the repeatibility
of each observer in pointing to the fiducial marks was
determined, over eighty measurements, as 1.1 gm, 3.2 Im and
2.3 gm for observers 1,2 and 3 respectively. These
expressed the 68 confidence limit or a measurement in x or
in y.

The measured riducials were fitted to the control points for
each frame individually, in order to localize any systematic
deformation in the film. Statistical tests involving the
relative fit of the two-dimensional conformal (four-
parameter) and the affine (six-parameter) transformations to
the control points, indicated that in general the four-
parameter transformation modelled the measured points S
adequately. A lack of fit detected in certain frames was
attributed to residual film deformations of the order of 3-4
gm in magnitude. It was decided that insufficient
information existed to attempt to further model these
residual s.

4.4. Analysis of edge measurements

A detailed statistical analysis was performed on the errors
in measurement to the edge wihin each frame. In order to
provide a common reference, the error in a single
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measurement was calculated as the normal distance from the
measured point to an idealized edge location which was
defined using the mean value of gray shade beyween the light
and dark sides of the frame. These error values were
negative if they lay to the lighter side of the ideal edge,
and positive if they lay to the darker side.

An analysis of variance (ANOVA) carried out with the factors
Replicate, Observer, Frame, and Location, indicated that all
four significantly affected the accuracy of the edge
measurements. In addition, many of the second- and higher-
order interaction terms appeared as significant. This meant
in effect that the variability in measurements within a
single group of three pointings to the same location was
very small when compared with all other groups of
measurements. The variability between replicates and
between locations is due in part to the fact that the
observer was not consistent in his edge-pointing process
over time, and in part to the irrecoverable errors
introduced by film deformations. Then for a practical
situation, where a given edge location is measured only
once, we may obtain a better idea of the variability in edge
measurement by pooling the variability associated with
Replicate and Location. The mean errors in measurement to
the edge within each frame are shown in Figure 3. These -
means were calculated over all 18 measurements to the same
edge by individual observers. Also shown are the 68X
confidence levels associated with a single measurement.

As can be seen, not only was the difference in measured edge
position large between observers, but there was also a
consistent trend: observer 1 measured to the lighter side of
observer 3, who measured to the lighter side of observer 2.
This was an indication of how the judgement of an individual
in locating the edge played an important role, independently
of the characteristics of the edge.

Considering specific frames, it is obvious that the accuracy
in pointing varied considerably. It was possible to perform
comparisons between certain frames and groups of frames, in
order to examine the effects of a number of edge
characteristics. For example, it was found that the mean
position in pointing to edges with a spread width of two
pixels (frames 2,3,6) was roughly 0.3 pixels (7.5 gm)
different from the mean position in pointing to edges with
four pixels' width (frames 4,5,7). Significant differences
in precision were noted when comparing frames 1 (high
contrast step edge) and 10 (low contrast step edge). In
this case, the mean measured position remained almost
identical, but the standard deviation of a single
measurement rose from an average of 0.12 pixels (3.0 gm), to
0.35 pixels (8.8 gm) for frame 10. However, in the case of
added random noise (frames 13,14,15), both precision and

581 .

'_ . " " < c -'.-', ' -. ' -, - -' " ."" " ". " ".-," - '- "" " ".." € € c ""- -"-" "- " - - -.- '"-".-"- - % -J



accuracy were affected. Edge orientation and edge type
(ramps versus others such as exponential and raised cosine)
were also found to be significant for at least one of the
three observers. Overall, the precision in edge
measurements ranged from 0.08 pixels (2.0 gm) for observer
1, frame 2, to 0.47 pixels (11.8 gm) for observer 2, frame
.10.

Analysis of these results is continuing, but it is obvious
from these preliminary findings that both accuracy and
precision in measurement may be affected by various edge
characteristics.

5. MEASUREMENT OF CROSS TARGETS IN SIMULATED AERIAL IMAGERY . -

The digital image files generated for the purpose of
measuring the positions of crosses made use of the
simulation package SIM previously mentioned, and a
subroutine implementing the least squares modelling
algorithm.

5.1. Implementation of the cross pointing algorithm

The least squares adjustment model for the fitting of a L
cross-type feature to image data was incorporated in a
FORTRAN subroutine named POINT4. The procedure followed in
this routine was to construct the desired feature as a set
of (up to four) rectangular components, which allowed for
the convenient determination of partial derivatives by .
summing over all components. A total of five parameters L
were estimates in POINT4 (see Figure 4):

h, the average background signal value,
h2 the average target signal value,
X,Y defining the geometric center of the target, and
6 the orientation of the target with respect to the

rows and columns of the image.

POINT4 allowed the use of a rectangular or Gaussian spread
function. For the functional model to be correct, it was
required that the function be circularly-symmetric and
separable into two equivalent one-dimensional functions.
However, if the spread function were not circularly-
symmetric, the errors introduced would not be expected to be
significant for the case of a symmetric target such as the
cross. For these tests, the width of the spread function
was assigned so that at least 90X of the spread lay within
half a sampling interval of the pixel center.

Quantities W, the width, and L, the length, of the cross,
were assigned approximate values based on the average scale
of the imagery and the size of the targets in the data base.
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The least squares approach does allow for the solution of
all quantities, including those parameters defining the
spread function. However, for these preliminary tests, the
goal was to demonstrate the ability to extract positional
information. The problem of determining precise target
dimensions was not the primary one in this context. S

5.2. Tests with synthetic vertical frame images

For these tests, four image files were generated using SIM,
corresponding to two vertical stereo pairs, A and B, with
60 overlap. Each file contained sixteen segments of fifty 0
rows by fifty columns, positioned so that the image of a
cross target lay near their center. The cross targets were
formed by modifying the data base elements as shown in
Figure 5(a). The two stereopairs differed basically only in
scale, so that on pair A the crosses were imaged with size
roughly six pixels across, and on pair B the crosses
appeared three pixels across. These files were identical to
those used in the hardcopy analyses of Unruh and Mikhail.

Parameter approximations for each target were obtained . . -

through the use of a simple matching template and a cross
correlation procedure. The template used represented a
cross of length five pixels as shown in Figure 6. Then,
considering the image data to be denoted by a function g,
and the template function (taking values either zero or one)
to be t, the cross correlation function Ctg was calculated
at each template position (m,n), using

AD
+2 +2

i-2 j=-2

The template position yielding a maximum value of Ct. was
used as the initial approximation for the position of the
cross. This then defined an eight row by eight column
neighborhood of image data which was involved in the
adjustment proper.

Approximations for the background and target signal values
were calculated by examining the average gray shade 1) at
the corners, and 2) in the center, of this array.

The quantity e was carried as an unknown in the adjustment,
but the corresponding approximation 80 was always assigned
the value zero. In the event that target dimensions were
also to be determined, similar methods involving the use of .
cross-correlation functions could be implemented to
calculate initial parameter approximations. In these tests,
values WR2,L-6 were used for pair A, and W=1,L=3 for pair B.
For each target the adjusted position within the eight by
eight pixel area was referenced back to the overall image

5
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coordinate system. The true error was then estimated as the
computed position minus the ideal position. Root mean
square errors were formed over the sixteen targets. In
addition, the root mean square error of the orientation
estimates was determined. These results are shown in Table
1, along with the corresponding measures of accuracy from
the hardcopy measurement of the same targets (on image files
A-2 and B-2).

The estimated standard deviation in estimates X or ? range
from .029 to .086 pixel. Using these values as a measure of
performance, the adjustment model with a rectangular spread
function did slightly better than the model with a Gaussian
spread function.

Estimates of position containing errors larger than 3*RMSE
were found to be associated with target 11 in image A-i,
target 2 in image A-2 and target 10 in image B-1. It is
thought that these relatively large errors (of magnitude up
to .200 pixel) may have been caused by noise in the
background image being confounded with the cross image.
With these points removed from the calculation of the
summary statistics, the RMSE's varied from .020 to .033 for
the rectangular spread model, and from .028 to .052 for the
Gaussian spread model.

In all four image files, the accuracies obtained were
substantially higher than for the corresponding hardcopy
human measurements using film pixel sizes of 25 and 50 Am.

iL
All adjustments but one converged satisfactorily, generally .
within four iterations. In one case, the adjusted parameter
values oscillated back and forth with successive
relinearizations, causing large changes in the reference
variance and the orientation estimate, but changes in
estimated target position of less than .010 pixel. This
instability is stil being investigated, and is thought to be
associated with the near-singularity of the normal
coefficient matrix N.

5.3. Tests with synthetic images of variable tilt and
orientation

Next, a set of nine image files were generated, with an
effective camera station equal to that for image B-1 as used
previously. In this experiment however, the exterior
orientation was varied, by assigning combinations of three
different values of the primary rotation omega (M) and of
the tertiary rotation kappa (K): kappa took on values 0, 200
and 450 . and omega 0, 5* and 15. Within one file, sixteen
targets were imaged. In all cases the ratio (average pixel
spacing)/(data base element spacing) was very roughly 1.0.
The two distinct target types were as follows: targets 1 to
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8 were 3 pixels across (type 1), and targets 9 to 16 were 5
pixels across (type 2), formed as shown in Figures 5 a) and
b) respectively. Initial parameter approximations were made
in a similar way to before, but for 80 using a set of six
templates for matching, each one corresponding to feature
rotations roughly 15@-20 apart. Image target dimensions
were assigned as W=1 for all cases, and L=3 for type 1, L=5
for type 2 targets.

The adjustment results are shown in Table 2.

As previously, the model with the Gaussian spread did not
perform quite as well as the model with a rectangular
spread. The most significant variations in algorithm
performance appear to be a function of the exterior
orientation and of the target type.

Firstly, the accuracy of the target position estimates was _.
highest for the case where omega equals zero. This was to
be expected, since only the image rotation rather than image
displacement due to tilt, could be modelled within the
adjustment. Then the quantity e corresponded to an estimate
of kappa, whereas no estimate could be made for additional
tilts. In general, the accuracy in pointing to the 3 by 3 L
pixel crosses decreased as kappa increased from zero: the
RMSE in R or ? increased from .021 pixel for K=0, w=O, to
.158 pixel for x=45, w=5 ° . This increase was accompanied
by an increase in the errors in orientation estimates.

Secondly, in pointing to target type 2, the RMSE values L
actually decreased as kappa increased from zero, and the
accuracy of the orientation estimates remains roughly
constant. This is still being examined.

Both types of adjustment, that is, pointing to both types of
target, appeared to be adversely affected when poor
approximations were made for target orientation. Since the
larger target allowed a more accurate determination of the

approximation e0 , in most cases the final estimate for e was
close to the kappa value. The exception was for the case
where K=45* and w=15 , where the final estimate for the
rotation of target 11 was close to zero. The resultant
error in position was on the order of one pixel. All values
in parentheses in Table 2 are the corresponding statistics
for the case where the known kappa values where used as
approximations for 8. As can be seen, the accuracy in
pointing to target type I is increased substantially for the
images with large kappa values. For target type 2, no
improvement was made over the original adjustment cases,
with the exception of the case described earlier.
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8. CONCLUSIONS •

The results described above indicate that both human and
algorithmic operators are capable of extracting high-
precision geometric information from digital images,
provided that the targets to be measured are sufficiently
well-defined. 0

In measurements of hardcopy digital image files containing
edges, the precision in pointing to these straight edges was
found to vary from 2.0 gm to 11.8 gm (68% confidence
interval). Variation in precision was associated with
observer and with edge characteristics such as contrast, .0
additive image noise and the width of the edge-spread.
Accuracy was more difficult to interpret, since the problem
associated with determining exactly what the human measures
is still unsolved. However, consistent biases in pointing
across the profile of the edge were associated with each
observer. The analysis of how these biases relate to an
'ideal' edge location are continuing.

The analytical approach was found to work well in the case
of cross-pointing in simulated aerial imagery. Crosses of
size three pixels across were located with accuracies of
.03-.06 pixel in vertical imagery. In imagery with a
variety of orientations, the approximation for the cross
orientation was critical in guaranteeing the highest
accuracies. Thus for the three pixel cresses, the
accuracies ranged from .02 pixel for vertical image files to
.16 pixel for files containing crosses with a 450
orientation. A second type of cross, of size five pixels
across, was large enough to allow a reliable approximation
to be determined for the orientation, thus allowing an
accuracy in the range .03-.08 pixel to be maintained, in
general, even with up to 15° of tilt present.

Factors such as the size of the target and the background
contrast play important roles in both types of operator.
Further effort is required in both areas, that is, to gain a
better understanding of how the human observer performs the
pointing process, and to use all information possible to
train an automatic digital operator to perform the same
tasks to the highest degrees of precision and accuracy. 0
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Table 1 Cross pointing on vertical imagery.

RECT. SPREAD MODEL GAUS. SPREAD MODEL HADOPY
IAERMSE(Xory) RME() RMSE(XorY) R4SE (8) LRERMSE(XorY)

FILE (pixels) (degrees) (pixels) (degrees) ERROR (pixels)

A-1 .030(.020) 1.54(0.39) .033(.028) 0.46(0.33) #11-
A-2 .063(.023) 2.76(0.75) .065(.026) 2.67(0.63) # 2 .292

B-i .029(.021) 1.21(1.21) .051(.043) 1.31(1.33) #10 -

B-2 .033 1.46 .052 1.86 - .290

Figures in parenktheses represent values calculated after removing points
containing large errors (positional error of more than 3*RMSE).

Table 2 Cross pointing on imagery with various orientations.

RECT. SPREAD MODEL GAUS * SPREAD MODEL
A A AA

IMAGE RMSE(XorY) RMSE(B') RMSE (XorY) RMSE(0)L
K.~ (pixels) (degrees) (pixels) (degrees)

Type 1 target

0 .021 1.67 .041 1.33
0 5 0 .032 2.74 .046 3.02-
15~ .053 3.27 .068 2.94

0 .081(.048) 8.61(4.23) .063(.052) 4.19(2.28)
200 50 .070(.079) 7.82(8.56) .084(.095) 7.45(3.53)

150 .085(.085) 8.99(8.74) .102(.113) 10.72(8.66)

00 .090(.026) 22.19(2.15) .097(.028) 22.58(4.19)
45 5 0 .158(.049) 43.72(1.87) .171(.050) 43.80(1.33)

150 .086(.090) 32.55(5.11) .134(.112) 35.83(4.16)

*Type 2 target

o .030 1.50 .052 1.05
0 5 0 .108 1.19 .114 1.79

15 0 .105 3.24 .132 2.80

0 00 .021(.022) 0.79(0.57) .026(.026) 0.71(0.71)
200 5 .048(.049) 1.65(1.65) .048(.049) 1.47(1.48)

15~ .049(.051) 4.57(4.57) .059(.059) 4.64(4.91)

0 .028(.028) 1.15(1.13) .029(.029) 1.24(1.24)
45 0 5 0 .028(.028) 1.67(1.59) .021(.021) 1.55(1.55)

is~ .277(.031) 14.69(2.59) .267(.019) 14.97(2.84)

Figures in parentheses represent values obtained when assigning correct
approximations for 6.
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Edge Location to Subpixel Values in
Digital Imagery

ALl J. TABATABAI AND 0. ROBERT MITCHELL, SENIOR MEMBER, IEEE

Abstract-A new method for locating edges in digital data to subpixel distance is minimized. The parameters obtained can be used to
values and which is invariant to additive and multiplicative Changes in estimate the edge location to subpixel accuracy. No analyticl 9
the data is presented. For one-dimensional edge patterns an ideal edge " o
is fit to the data by matching moments. It is shown that the edge loca- study of the performance of this operator, in the presence of
tion is related to the so-called "Christoffel numbers." Also presented is noise has been presented.
the study of the effect of additive noise on edge location. The method Frei and Chen [6] have developed an algorithm where an
is extended to include two-dimensional edge patterns where a line equa- "ideal edge element" is defined as a straight boundary line
tion is derived to locate an edge. This in turn is compared with the stan- passing through the center of a 3 X 3 window, thus separating ...
dard Hueckel edge operator. Am application of the new edge operator t
as an edge detector is also provided and is compared with Sobel and two regions of different, constant intensties h1 , h2 . They
Hueckel edge detectors in presetAe and absence of noise. have characterized the "ideal edge element" by its magnitude, . -

1h1-h2 1 and orientation. However, for the purpose of "edge
Index Terms-Edge detection, edge location, Hueckel operator, mo- location," the "ideal edge element" can also be easily charac-

ments. terized by the equation of the boundary line. One obvious

disadvantage of this approach is the constraint imposed on the
I. INTRODUCTION line by forcing it to pass through the center of the window.

D ECENTLY there has been a growing trend toward collect- Another possible disadvantage of the algorithm is its send-
JLN.ing and processing terrain images in digital form. While tivity to noise.
there has been considerable work done on general digital image The Frei and Chen algorithm is a generalization of the so
processing in such areas as image coding, image restoration, called "gradient" edge detection technique, where different
and feature extraction, there has been little or no attention paid edge detection methods correspond to different numerical _

to the effects of such processing on the geometric fidelity of approximations to the gradient.
the image. The problem is motivated by the need for accurate Roberts [7] defines the gradient G, at point (i, j) as
measurements from remotely sensed imagery, which is of G = If(i, j) - f(i + 1, i + I)1 + If(i + 1,/) - f(i. j + )l-
prime importance to the mapping communities [I], [2]. Many
of these images are in digik form. Thus, photogrammetric (1)
analysis which deals mostly with metric aspects of images or equivalently,
must be combined with digital image processing and feature
extraction procedures, such as edge detection and location G = I(F, W1)[ + I(F, W2)1 (2) -

techniques. where
In this paper, an attempt has been made to give an objective

analytical definition to the term "edge location," when a F +
blurred and noisy observatim of an ideal edge in a digitized F Ai+l I i I I+ I)Lf(*+l, /.f , iI.i)
picture is given. It shall be assumed throughout this work that
the desired image has been sunpled and quantized to obtain an W,= [1 01
acceptable discrete representation of the continuous image. -0 -11

There appears to be a lack of a quantitative and universally 1
accepted definition for the term "edge location." The most = [0
applicable publications which have dealt with the above prob- Li .0
lem are those by Hueckel 131-[5]. Hueckel assuines two-
dimensional data are available and fits a parametric function and
to the empirically obtained edge disk so that the Euclidean (A, B) A inner product of matrices A and B

N N '"."
Manuscript received January 25, 1982; revised May 31, 1983. This (AB = a/,/b1,1.
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fnedas , 10 0 10 5 20 30 40 40 40
11 ' -11(a)

IV =[I 38.A
1 1 0 - 30 =2 (3) 40 7 ------

One should note that the "gradient" method cannot be used 20 • IZ.3 x
if subpixel accuracy of edge location is desired, unless some 10 - . -
kind of interpolation process is performed on the data matrix. 0 _ p.'.... s 1 - __2____"'

Machuca and Gilbert [9] have given a theoretical argument, (b)
based upon noise models that "gradient" methods should not Fig. 1. Empirical edge pattern as input to the operator, and the ideal
be used. Instead they have proposed a new algorithm where edge as its output. (a) Input empirical data. (b) Sample data and
the edge detection is not based on derivatives but uses integrals ideal edge that matches first three sample moments.
to reduce the effect of noise. Their approach uses moments
to detect edges [10]. They have also shown that preprocessing 11. A NEW ONE-DIMENSIONAL EDGE OPERATOR
of data can appreciably improve the performance of their Recent trends in mapping communities toward digitizationoperator.Bet. a H 11of analog pictures have motivated the need for accurate mea-.

surements from digital images. In an ideal case, reflected light
description of signals with step edges. Such signals are graph. intensities from an object and its background will be piece.
ically represented by a path through a trellis. Blurred versions wise constant with discontinuities at the edges. Hence edges
of these signals are similarly represented. Then a cost or and their location play a central role on the study of metric

A length is assigned to each branch of the trellis and a MAP fidelity of digital images. When the edge data is digitized, it 9.
sequence estimate of the signal is computed by finding the may be possible to determine the edge location to subpixel
minimum cost or length path through the trellis. The Viterbi accuracy by examining the transfer function of the digitizing
algorithm is introduced as an efficient means to find the equipment and the output pixel values.
minimum cost or length path through the trellis. The es- As was described earlier, there are a number of techniques
timates produced by this algorithm are then used for edge available that can be used, if pixel accuracy of measurement

P location measurement with "pixel" accuracy. is desired (see [6) -1[I1) But for a more accurate measwe-
Finally, Jacobus and Chien [12] have presented two edge de. ment, Hueckel [3] -[5J has provided the only alterativ-

tection techniques which are based on the application of ar- However, the Hueckel operator requires two-dimensional
rays of edge detectors, each sensitive to a different group of data.
edge types. These techniques are claimed to be able to mea- In this section, an analytical definition of edge location i ..
sure an edge with subpixel accuracy. given. It is shown that the method is easy to derive in closed

A good review of some of the techniques mentioned above is form. This in turn significantly reduces computational load. L.
presented in [13]1-[16]. This method is quite insensitive to the sequence length. The
Summary of Problems Considered method is invariant to multiplicative and additive changes in

As a first step in studying the metric properties of digital the data. This is important because many optical, photo-
pictures a new one-dimensional analytical formulation of edge graphic, and digital image processing operations can scale and
location is presented in Section 11. The approach is based on shift the data. Throughout this section it is implicitly assumed

* fitting an ideal edge to a set of empirically obtained one-di- that empirical edge data is the output of a sampled scan line
mensional edge data, such that the first three sample moments across an edge pattern and consists of a discrete, one-dimen,

are preserved. It will be shown that the parameters of the sional sequence of numbers.
ideal edge are related to the Gauss-Jacobi mechanical quad- A sampled scan line across a step edge in the absence of
rature problem, where the edge location is related to the so- noise is characterized by a set of numbers x1'S, i = 1, 2,. . ,

called "Christoffel numbers," and intensity levels are the zeros that are either monotonically nondecreasing or nonincreaing. -
of the orthogonal polynomial associated with input probability On the other hand, an ideal edge is a sequence of one bright.
density function. Also the effect of additive uncorrelated, ness value hl, followed by a sequence of another brightness
Gaussian noise on edge location is studied. Finally, the ef. value h2 . Here we define an operator that, when applied
fects of averaging and median filtering the input edge data are to empirically obtained edge data [shown in Fig. l(a)], gen-
studied, and the reducsion of noise effects due to preprocess. erates an ideal edge [shown in Fig. lkb)], such that the first
ing is empirically verified. Section III describes the extension three sample moments of the imput data sequence which are
of the edge location method to two-dimensional edge data defined as
where the problem becomes more complicated by the fact _'"

that at least two parameters should be specified to describe m) - x i= 1,2,3 (4)
nedge location. The new operator is compared with the stan.

dard Huecke! operator. Also included is an application of the are preserved. If we let k denote the number of ht values in
new operator as an edge detector and a comparison with the ideal edge, then preserving the first three sample moments
" uecke! and Sobel edge detectors. between the input and output sequences is equivalent to solv.
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', tht :h:ee equations TABLE I
EnGE LOCA1l10, FOR DiFIREE%1 1'PUT EDGE PArup%%. THt FiIsT

Nt mitRi % Ekc,, SFQ' F% RFrafmEs TUE VAILF 41 LocAilo %.
(5) St 1 ,f17 NI %IRI HAf A SACI, OF OF.

w~here Inps.t squenee (xi) EdP Loe~t

k (a) 000 S I I I 11 3.

Pi (b) 000.251 1 1 1 11 3811

Wn c 000.2 1I 1ii1II1 1i1 1I 3.861anddl .1 .1.34.e.8t 4•S
2r

"'
Furthermore, the edge location given in (II) is invariant

for three unknowns pl, hl, and h2. under scaling and translation (i.e., multiplicative and additive

The solutions to these equations are presented in [17] and changes in sample values). Thus if

are given by zg=axg+b i=1,2," ,n (13)

h, =Ri - 6 2 (6) where a and b are any constants, the sample skewness of the
YP zI sequence is identical to that of the x1 sequence, and the mea-

sured edge location (II) will be identical for both. This can be

h2= ffi + 601--' 1(7) significant because many photographic and digital processing
V P2 stages may scale the data in this manner.

P2 = - + 1(8) I1. EXTENSION TO MULTIPLE EDGE DATA

S" In the previous section the fitting of an ideal edge to a e-
where quence of empirical edge data was discussed. In this section

+ 2oW? - 3-s lm we will show the extension of the technique to multiple edge
S ' .3 (9) patterns.

Assume the sequence x1, i = I, 2,- • , n, represents a m* 7
-2 fi= 

2 - -2 (10) tiple edge pattern. If it is desired to fit N << n ideal bdi..
ness levels (N - I ideal edges) to the sequence {xj, then th"

From the above results we see that k = np, may be a non- edge operator should preserve the first "2N- 1" sa'n!

integer [see Fig. (b)]; hence, if we define the edge location moments.
" as Hence, the following "2N" equations should be satisfied:

y = k (II) N

where the first pixel is located at / = and subsequent pixels / p/h = 1 k k = 0, ,2,..", 2N - 1 (14)

have spacing of one, then we are able to obtain a subpixel mea-
surement of edge location (e.g., edge location need not be at a where
sample point). hi Ath brightness level associated with N levl ideal edg.

In general subpixel accuracy of measurements is not possible t
without first introducing some sort of interpolation process. p, - relative frequency of hi among the N brightnes levels.
This, however, is not necessary if the method mentioned above - .

:;:.. is used. Furthermore the computation involved in this process ii,.:

is much less than the classical two-dimensional operator of Szego [18) has provided a solution to the above equations
Hueckel [3]-[5]. under the context of Gauss-Jacobi mechanical quadrature

Table I shows the applicability of this technique to different problem, where h/, / = 1, 2, • N, are the roots of the
edge patterns. Rows (b) and (c) in .able I provide an example polynomial
which shows the insensitivity of this method to input sequence "
length.

It is easily shown that the quantity i defined in (9) is equal fi f n i 2  3  "". rN.I

to sample skewness (see 1211) of the input data sequence. g(h)= : (15)
Thus.

M r-I MN tNvI "" N-I
=I .~.(x 1 - ffi) 3  ()1 : ,2hN1 " -( 2) 1 h it ... ',.:

n ~ 6','" = A ,irx + A'-,h '
1

' 'I +" "+Ao (16) :--

The-:ore. one can conclude that the edge loation is a func-resut tat ill avesevralwhere (16) is an expansion of (iS) by minorstun c: ske, ness onh. a :.:ul result that will have several
apphca:ions, M 0 1 (17)
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and pis. j 1. 2. ,. are the so-called "Christoffel num- .

hcrs," obtained by I

P1 ' = , 4(hi) 1l,2, - N (18)
Pn - 0 X

where {0,(x) E ir.,,), m = 0, 1, , N, are orthonormal
polynomials associated with the input data distribution .5 1.5

(a) ;i.el location
(a) tunit length is assued)

f(x) (xi-x). (19)
Intensity 

i
It can be shown [191 that the solution presented above is A ' "

identical to solving the system of equations: I .-

CO ?7o + C1 '11 + ""•+ CN- s ' N. I = - ~2N-S I <-

Comnl +Clfi2 +-'+CN-IffiN =-fiN.l 1.5 k1.
pixel location

(b) (unit length is assumed)

COIN -1 +C i +""" + CN- 2N-= -m2N-" (20) Fig. 2. Examples of multiple edge patterns.

Szego [18] has shown that the system matrix

inO il 2  p2 -

i n I _ _ _ _ _ _ _ _ _ _ __2

LMN-I MnN PnaN-2a (21)1
h. h x

is positive definite if there are at least N distinct values among i 2
{x)j , and this in turn implies that equations (20) have a Fig. 3. Relation of ideal edge parameters and a probability distributionI.,,andthisin urnimples hat quaion (20 hae afunction.
solution. Once the values of Co, Cl, - "., CN are found, the fu-ton
step levels hl, h2 , ... , hN. can be found from the roots of
polynomial senting a distribution function where h, and h2 are the two

w(x) =XN + CN-I xNI +.+C, X + Co. (22) abscissa values (in general N abscissa values for N-level multiple
ideal edge) where jumps of heights p, and P2, respectively,

It can be shown [19] that the roots of (22) are identical to the occur (N - 1 jumps for the N-level multiple edge). See Fig. 3
roots of (16) and that the roots are all real valued and are for an example distribution function. L7
different from each other if there are at least N distinct values Estimation of a distribution function has been a well.defined
among the xi. problem in statistics, and many techniques have been pre-

Once we have found the N values of hi the N values of Pp sented over the years to solve the so-called reduced or finite
can be found from the N equations problem of moments, i.e., the problem of determining or ap-

proximating a probability distribution from a finite number of
ph7ii = Mk k = 0, 1, 2, -- ,N- 1. (23) its moments. Hill (20] has described the more common of the .

existing methods and has presented an explicit procedure for

The theoretical steps, and the results derived in this section utilizing them numerically.
were not based on the actual empirical edge data shape. The Von Mises step function approximation [21] is similar to

werenotbasd ontheactal mpircaledg dat shpe.Thethe technique we use to fit an ideal N-dimensional edge to amethod will obviously work if one is trying to fit an ideal step t oec inp ege dta by presin e t N .edetoast fnodceang miiclededtasow nset of empirical input edge data by preserving the first "2N - . .i
edge to a set of nondecreasing empirical edge data shown in I" moments. If one knew the original edge data was not an L
Fig. 2(a) BUtaif theempirical nedge idata patterniS as shownin ideal edge, it might be possible to fit a curve other than the
Fig. 2(b), the data must be broken into two monotonic pieces ielse det h aabsdo h apemmnsideal step edge to the data based on the sample moments. "': "
and each edge found separately. IHill (19] and Ederton and Johnson [22] give example pars-

IV. RELATIONSHIP BETWEEN ESTIMATING AN IDEAL metric curves used for fitting to various shapes of distribution
EDGE AND ESTIMATING A PROBABILITY functions.

DiSrRleUIION FUNCTION V. STUDY ON EFFECT 01- ADDITIVE NOISE

So far, our objective has been to fit an ideal edge to a set of ON EDGE LOCATION
empirical edge data, under the assumption that they formit a In this section we shall discuss the effect of additive, zero-
monotonically nondecreasin'g sequence. In this case an ideal m G-eg anl o
edge was characterized by two adjacent step levels hI and h mean, Gaussian noise on edge location. The analytical model
and their relative frequency of occurrence p. and P2 where is assumed to be
P t4 p, 1. But the ideal edge can also be regarded as repre- ZI xi + 'i i= 1, 2,., i (24)

•% % % ,.°
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where Substitution of (31) in (30) yields

Xi = ::h ple of the origdal input dataf f "-- E { ( -~~~~E p): 2 ro), 2 . . _-
I .' :ndependent identicall. distributed zero-mean, 2.. 2 f

Gaussian random variable.
with / p e0 70124

=0 i * - dw 2 " ""dwn . (32)

and Evaluation of (32) is a Herculean task, therefore our effort

Z, ith observed value, is maifily focused toward finding some analytical solution for
edge location movement when some approximations are made

An exact solution to the edge location jitter due to noise de- in the evaluation of sample skewness.
fnedas In general, one can write

. e= n -p) 25) M = E {M} + Y, i 1 , 2, 3 (33) i

where where

"L /* = measured relative frequency £ { Y = 0

p = true relative frequency and

can be obtained in the following way. From (8) and (9) we va[YgJ var[MJ.
have

-P -P (s +l -S (26) Writing the above explicitly for random variable M, will yield

4- = -- . (34)

where n1.
+-L...3

*' . I3 +2M. -3M (7 E{M} = Ri (35):"S = (2 7) '

.'- avarIW, = (36) "
I _ - n:

M1/ Za = l ,(xk+ lVk)' i=1,2,3 (28)
n k-1 n k.1 For random variables M2 , and M3 we have

2 - (29) _1i W

Y 2  ( + 2x, W, -ov) (37)
and i is the sample skewness of the noiseless edge as given in n i -
(9). As can be seen from (27)-(29), S is a function of W1, R12,

* ' • • .. t,; therefore the mean-square edge jitter is 1 + 3z W + 3x5WV - 3x~o?.) (38)
L3 (W + ,1+xW

E-( P - p)2 fo

fE{M}- E n . (x W) = +o ,, (39)

* . < (wl,w 2 .- - ,WN) dwddw 2 " "dw I-I

(3) E{M 3 = F 3 + 3;il02 (40)"." (30)

Calculation of the variances of M2 and M3 is more cumber-
* where f,(w2, iv , W,) is the joint probability density some [191 but the following results can be obtained:

function of i.i.d. Gaussian random variables. Hence

I2_9/2a2 var[M2 =(2oi2 2 2oW  (41)
.f;.$w,. w2. " , = e W (31) n

where var[M,]= (3f4 + 12 a o, + 5o4) . (42)W n
In order to calculate edge location, one needs to calculate the

"skewness" of the observed data. From (9)

S= -l + 23I' - 3A11, M2  (43)
0

"e=
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where Hence from (47)

{= - E{S} 3 g + o 3 E[Y3 ) - 3ouE Y, - 0. (52)

Combining (33) and (43). Therefore we can state the following lemma.

S7 + 3i 1 o1 + Y3 + 2(ii, + - 3(F11 + Y1)1 2 + o + Y2 ) (44)
(62 + o2 + Y 2 - y2- 2MI y, )3.

According to (13), with no loss of generality, one may assume Lemma 1: Additive noise tends to move the expected value

MI=0 (45) of edge location to the center...
m 2 0 (4) (Next, for a low signal-to-noise ratio, and for large IiI values

M2 = 1- (46) (when the. edge location is toward the ends), the first two
Then the observed skewness can be approximated as terms on the right-hand side of (50), which we call the "bias

component," are dominating. On the other hand, for small
S = 03i + 03y3 - 3o}1 (47) values of Ilf (when the edge is close to the center), the last

where three terms which we call the "jitter components," are dom-
inating. Fig. 4 provides an example for verification of the

0 (48) above statements. In this figure an input edge data of sequence
(I + a2)1 '2  length 20 was chosen. The x-axi corresponds to edge loca-

and the terms }' , Y1 Y2 , Y are disregarded for the sake of tion and y-axis corresponds to rrns error in edge location. The

simplicity and due to small effect they have an S. This later input signal-to-noise ratio is defined as
b_ tatement is verified when experimental and theoretical results S/N A 10 log o-i dB (53)

are compared. Substitution of (47) and (28) into (27) results 2-

in where

n __1 -3V o
A = height difference ofideal age

= [ 4-) 4+o = variance of the noise.

+ (49) The signal-to-noise ratio was 6 dB for data in Fig. 4. The full
a Y + o6f2 4 P . (76i2]J line corresponds to the bias term, and the dashed line cor-

'C-- Theresponds to the jitter terms. Funbermore, Fig. 5 compiares.The mean-square error associated with edge location can then empi nd theoical rmse lotierror.C-1 empirical and theoretical rms edge location error.
be calculated as •

VI. PREPROCESSING OF DATA TO
03_ _____ - ACHIEVE MorioTONICITY

E e-44 2 0 06-2 )

4+ SIn the previous section, we calcu-ted the edge location from
o2 observed data that we assumed to be corrupted by additive

+ 2(0
4 E { Y } + 9E { Y } noise. However, in the presence of additive noise, application

of some preprocessing techniquem, such as averaging and/or
Y3 median filtering 1151 can on the average appreciably decrease

62 E{Y . (50) the error incurred in calculating the edge location.

For low noise conditions, median filters have the property of
In the above eguation E{Y2}, and E{Y'} are respectively removing impulses and oscillations while preserving monotonic .'-'given by (36) and (42); therefore one needs to find E{ Y, Y3 } edges 1231. On the other hand, he averaging operation tends .-.-whose value can be easily computed by combining (34) and to introduce distortion on edge location. To see that, let u-,

(38) to give assume we have an input edge data sequence xm, m = 1, 2,-
K- Y I  n defined as follows:

Y1, Y3'J - E i ( + 3xi' W.
fit 0 m<r

Xm = (54)
2 m >r.+ 3x, It'? - 3x o)I >r

If we use a three pixel wide averaging window the input and
302 output sample moments i. and A, 11, 2, 3, are related in

0 o (51) the following way:

We can make several observations based on (50). For large MI = MI (55)
amounts of noise we see from (48) that 4

2 -M=  - 9- (56)
a 0. 91-

-.- . -" . -.% . - . . '. . . . . - . . " . - . ' - . " . .p' . . .
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i ?O 1.33-

6.94 1.06

"" "5.22-

0.00 0.00
0.00 4.00 9.00 12.0 16.0 20.0 0.00 3.90 ?." 11S. 15. 19.0

Location of True Edge (pixels) True Edge Location (pixels)

Fig. 4. T%%o components of edge location error for (50). The solid Fig. 6. Theoretical error introduced by averaging an ideal edge using
line rep:esents the first two terms of (50) which are called "bias" a window of width three. The sequence length is 20 points.
(dc offset error due to the fact that additive noise tends to force the
edge location toward the center of the data). The dashed line repre-
sents the remaining three terms in (50) which are called "Jitter" Combination of(58)-(62)will then yield
(ac erro:s due to additive noise). The sequence length is 20 points

and the sigal-to-noise ratio is 6 dB. 2

3 n/ (6i n)), . ,.
9.6(1 - 4)3/2

2 n-_- --.)
/ 32(60) L.

From (60) we can conclude that centered edges remain un-
3. 4 - changed under the averaging operation. This is easily shown if

/, one substitutes 0 for 9 and n/2 for r in (60). For noncentered
edges when 0 < r < n/2, f takes negative values, and for

1.92 values of r in the range of n/2 < r < n, 1 takes positive values,

therefore from (60) it can be easily seen that averaging tends

a0 to move the edge location toward the center, this is especially
0.00 4.00 9.0 s2'0 6.0 2o .0 true if the assum ption . .

Loca:i o of True Edge (pixels) -

F4 .5 Comparison of empirical and theoretical rms location errors.- - (61)
The dashed line represents the theoretical curve (50) which is the 9n
combination of the two components in Fig. 4 and the solid line shows
the meas-ired empirical error using 200 trials for each edge location.
The seq.ence length As 20 points and the signal-to-noise ratio is 6 dB. holds. Fig. 6 shows the effect of averaging on an ideal edge of

sequence length 20, the x-axis corresponds to edge location,
and y-axis corresponds to rms edge location error. For com-

A3 2 (57) parison purpose Fig. 7 shows rms edge location error versus
3 n various signal-to-noise ratio for a centered ideal edge of

and sequence length 20. Even though averaging tends to intro-
ndduce some distortion, as a rule (especially for low signal-to- . _

=n=.-= (58) noise ratios) one can use an averaging filter in the presence of
SI Z" 3 n (58)noise as a means to reduce error in edge location estimation.

The reason why this is true can be explained in the following
The s53-Tle skewness associated with output sequence can way:

I~~~~~ t!7. 7te.a

m, Z* = X + Z t i = 1. 2, (62)
~~~(59) - "

()Then. if a "k + I- size averaging indow is used. we will have

.. ..,..,..,..- ......... .. _....,. .. '..', .'..... . . . . .... - .. ...
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2. 27 - TABLE 11
COMPUTED MEA% ABSOLLTE ERROR M1ss SI kA U111 A-11 WITFIOLT

PREPROCESSINr. SEQUENCE LEVGTH = 20, Enr)E LOCATION =6,
SNuosIER OF TRlILS = 200

1.8
K Mean Absolute Error

For S/N = 0dB r.-.
.1.36 No preprocessing 4.723

C Using median filter only 4.040
Using averaging only 3.863

~ .09Using median filter first 4.030
and then averaging

Averaging first and 3.857
*then using median filler

at .55

For S/N = 6dB

No preprocessing 3.7 IS
___________________________________Using median filt~er only 2.759

0.00 Using averaging only 2.410
0.00 6.0 12.4 18'.6 L'.9 31.0 Using median filter first 2.503

Signal-to-Noise Ratio (de) and then averaging
Averaging first and 2.074 .Fig. 7. Rms edge location error as a function of signal-to-noise ratio. .

The sequence length is 20 and the edge is located at the center of the te sn einfle
sequence. For S/N = 0dB

No preprocessing 2.188
Using median filter only 1.411

I jiik/2 Using averaging only 1.153
I ZUsing median filter first 1.138

,-i- k12 and then averaging
Averaging first and 1.033

I jk/2 I j-ivk/2 then using median filter

k + I -i-k/2 k+Ij.i-kI2 For S/N =2"dB

INo preprocessing .306W
-x,+ ci. (63) Using median filter only IS4

Fro (6) te man nd arinc ofIs'canbe asiy otaiedUsing averaging only .175
Fro (3)themen ndvarane f i anbeeailyobaiedUsing median filter first i17e

and are equal to and then averaging
Averaging first and .118

EtJ$'i=j0 (64) then using median filter

val wi (65)

As can be seen from the above equation, averaging always low- 611PIT-- 7.7

ers the variance of noise by a factor of "k+ I" which is equal 9 8 717 76413

to the width of the averaging filter. But as it can be seen from 9 8 18 177. 7 6 1

Teratio such teeol that above eit value use of inaflto-ns is d.
visable. Pomalaza [241 has compared the performance of a 3- 7 16 15 54

pixel wide median filter with an averaging filter of the same 7 16 16 13 5'
size when applied to an ideal edge of two adjacent intensities ()(b)
in the presence of additive uncorrelated noise. He has calc"- Fig. 8. (a) Empirically obtained edge element. (b) Ideal edge element.

P lated the variance of the output of the median filter around
the di~continuity and has concluded that the height of the
discontinuiiy has to be almost twice the standard deviation of this section the two-dimensional edge operator is comparcd
the noise for the running median estimate to start having less with Hueckel~s edge operator.
mean-square error than the running mean estimate. In implementing the edge operator, an approach similar to

Hueckel [4) is taken to define the input and output of the
VII. EXTENSION To Two-DimENSIONAL operator. In particular, the edge operator accepts as input a

EDGEPATTRNSset of grid squares consisting of 69 pixels, arranged so as to
In this sect ion. thc one-dimensional edge operator discussed best approximate the area of a unit circle [see Fig. 8(a)]. As

previotisl is extendcd so that it can operate on two-dimen- an output. the edge operator generates an ideal edge element
sional ed~ jtrs hstcnqeietfe neg oa defined over a unit circle with two brightness values h1 and
Iion b) a line equation whose two parameters are calculated h12, along with tile borderline that separates the two intensity
according i., criteria to be discussed in later sections. Also in levels as shown in Figs. 8(b) atid 9. A miore exact definition

J- . %
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Fig. 9. Edge line equation as a function of a and p. Fig. 10. Indexing associated with each square pid.

of the output disk is obtained if we denote the ideal edge ele-

ment by U(x,y, sin a, cos a, r, h, h2 ), then

U(x,y, sin a, cos a, p, hl,h 2)=hi ifysin a+xcosao p

U(x,y, sina, cosa, p, hl,h2)=h2  ifysina+xcos a> p.

(66) .

However, Hueckel chooses the quintuples (sin ct, cos a, p, h1 ,
h2) so as to minimize the L2 norm between input and output
data, i.e., he minimizes the quantity A(.),

160= f fix, y) IL

* 0

-U(x,y,Sina, cosr, ,h 1,h 2)] dXdy (67)

where I(x, y) is continuous and constant over each grid associ-
ated with input data.

In our technique we first find the quantities p, hl, and h 2 Fig. 11. Areas to be added or subtracted for the calculation of weight-

by preserving the first three sample moments between input ing coefficients.
and output of the operator in the following manner:

ff k(Xy)dXdy k p, k One should note that indexes in (73) refer to grids shown in

D Fig. 10, each having an area "A" equal to

(68) A=4d 2  (74)

where where

At d t
Pi A (69) d " .

IT The value "1/9" was chosen because of the requitement that

A t the area on D covered by intensity h, (70) the input disk should best approximate a circle of radius one. 3
To find the weightings associated with each grid intensity,

p(71) if one takes into account the symmetry that exists among grid

D= {xy:x +y 1}. (72) areas, then

By assuming that I(x, y) takes constant values over each grid, WI WS = W21 = Ws7 W69 = W6S = W49 = W13
then the integral in (68) becomes a weighted sum of intensities '
in the input disk. Therefore one can write . -(A f dxdy+!ffdxy)

* .9..

ik = w1k k=0. 1,2,3 (73) 8.4670539 X 10-1 (75)
"j I 

=  
'.'. % ,

S= intensity associated with jth grid where 23 and f1, correspond to the area shown in Fig. 11.
"' "The last term is added to take into account the areas of the

14, = weighting associated.with /th grid. circle that are not co~ered by the grid. Similarly,..........................................................
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.' X. -0 - IV6a = %66 W48 = y

- 0.1s29l8(76)

%'31= 139 = 1"6 = 0.015573185 (77)

Finafly.

W6 = w6 = 'VW12 = 0.013068037. (78)

The rem.ainin weighting coefficients are assigned a value of
"0.0157 19006."

Once the moments MI, FY2 , and m3 are obtained, then (68)
corresponds to (5), and, hence the values of Pi, P2, hI, h 2

can easily be determined from (6)-(8).
Given a circle of radius unity, and an arbitrary angle 0 4 0 .

v/2, then the area "A" shown in Fig. 12 is given by

A=- sin 20. (79)

If we let

P min (P, P2) (80) Fig. 12. Region A shows the area to be calculated in (79).

then, by combining (60) and (79), one can write
where

or - .sin 20 -p1
sino s a=

si0 n 0 cos =I rp. (82) 
' -

0 __

cos a=
Equation (82) is a transcendental equation, and one can +l2
use some numerical approximations [19] in order to obtain a
0. Once A is obtained then and

69
p = cos 0 (83) x11.

and, hence, by preserving the first three sample moments, one X = -9
is able to determine h 1, h2 , and p. 69

Still left to be found is the direction of the edge, or in other "
words, the slope of the border line separating the two inten-
sities h and h2. The following approach can be used to find Y--"

the direction of the edge. yjI
Assume an ideal edge element with grey level intensities Y =.

hI and h2 inside the circle x2 +X2 = 1. Define , Ii

Cr j.i
h xdx dy+h3Jfxf d1i intensity of..th grid

=  ffdffd r  (84) (x,1 y,) coordinates of the center of ith grid.
III dx dy + h2 dx dy "....n, J A minus sign appears on the right.hand side of (86) when p, <.

Cr i-f p2, because the center of gravity should always be located
hJJ' y+dx dy+hilf x dy closer to the set of pixels with higher intensities.

(85) Table III shows the results obtained when the operator is
applied to different empirical input edge patterns. Also, for.'"

ili ,I dx dy + h2 dx dy the sake of comparison, the results obtained when the Hueckel . -
"n, edge operator is applied to the same input edge patterns, are

as the coordinates of the center of gravity of intensities in- shown.
side the circle, then the direction of the edge is perpendic-
ular to the direction of the vector from the origin to (.r, fi. VIII. THE EFFECT OF ADDITIVE NOISE
.Machuca and Gilbert [91 have used the above idea in deriving ON 2-D EDGE OPERATOR %,,.

tleir edge detector. Therefore, by combining (7), (8). (84), In Section V an analysis of the effect of an additive white
and (85). one can write the. edge line equation as Gaussian noise on p was provided. The effect of additive noin

on the slope of the edge line can also be theoretically analyzed
S sin + x cos =- P P 191. Here we will present only empirical results.

)-sina+xcosa=P P1 >P2 (86) Figs. 13 and 14 show the effect of noise (S/N = 20 dB) m
-• ... .. .. .
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TABLE III
APPLICATION oF EmXE OP'FR410R To Diit-RPs\ Ex(;F PA'.TRis,

Two-DiME\S10ov.% I%Pt.T EDGE PATIeR'.

* T -. ~,Id.iI.. a~p~ p.;a3tirra Two-Dimensional Input Edge Pattern

W000 0000 90.00 190.00 190.00 0..0 0.30 0.40 0.60 0.80
90.00 90,00 90-00 90.00 19000 190.00 190.00 0.10 0.20 0.30 0.40 0.60 080 1.00

*u1uLo 90.00 90.00 90-00 90.00 190.00 190.00 190.00 190.00 0.0'k 0.10 0.20 0.30 0.40 0860 0.80 1.00 1300
Coo,0 90.00 90.00 90.00 90.00 190.00 190.00 190.00 190.00 u.00 0.10 0.20 030 0.40 0.60 080 300 L00
*u(0,00 0 000 90.0 l 00W 39000 190.00 19000 19000 0.00 0.10 0.20 0.30 0.40 0.60 080 300 300

W.00 90.00 90.00 9000 90.00 190.00 190.00 190.00 190.00 0.00 0.10 0.20 0.30 0.40 0.60 0.80 300 1.0
W0.00 90.00 90.00 90.00 90.00 190.00 390.00 390-00 390.00 0.00 0.30 0.20 0.30 0.40 0.60 0.80 100 300

90.00 9000 9000 9000 390.00 190.00 390.00 0.10 0.20 030 0.40 0.60 0.80 300
90.00 90.W00 9000 190.00 190.00 0.20 0.30 0.40 0.60 0.80

Result of Application of New Edge Operator Result of Application of New Edge Operator

tNo a!jacent brightness intensities two adjacent brightness intensities

90.00C4)0 190.000000 0.207845 0.850504

edge Lne equation is edge line equation is

l0.00003Y + (L.00000l.X =0.-111111 (-0.000000)*Y + (1.0000W)-)X 0.124466

Result of Application of Hueckel Edge Operator Result of Application of Hueckel Edge Operator
toajcninestleestwo adjacent intensity levels

89-002SK 189,368132
0.073249 0.961764

lint. e.;Jation represeninig edge location
line equation representing edge location

10.OcJio.Y + (3.000000l.x 0.10868'.
l(0.0000001-Y + (1.00000l.X 0.082878 L

Two-Dimensional Input Edge Pattern

10.00 30.00 10.00 10.00 30.00
30.00 10.00 10.00 10.00 10.00 10.00 10.00

15.00 30.00 10.0 30.00 10.00 10.00 10.00 10.00 30.00

20.00 20.00 15.00 10.00 10.00 0.0 10.00 310.00 10.00
2000 20.00 20.00 2000 3500 10.00 1000300 10. 00.
20.00 20.00 20.00 2000 20.00 2000 1500 1000 3000
20.00 20.00 20.00 20.00 2000 2000 2000 2000 35.00

20.00 20.00 20.00 2000 2000 2000 2000
20.00 20.00 2000 2000 2000

Result of Application of New Edge Operator

two adjacent'brightness intensities

16281 19.837120

edge line equation is

(-0.f,97350).Y + (-0.441320)-X =0.000000

Result of Application orf Hueckel Edge Operator

two adjacent int*ricity levels

Iiie equal en rej. r--etoing edge locat ion

+0~I't.l 1 0I;,3!'0l.X 0.127S29

..................................... . . .. . . . .. . . .
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L .356'-

o 3 4

• .051.

-.02'5

-. 951 - . .7 -.;90 .W .56 .951 Fig. 15. The location ofedge operators for the purpose ofedge detectio.

Fi t13. Effect of additive noise on quantity p of edge line equation
-or the proposed 2-D edge operator (solid line) and the Hueckel edge
operator (dashed line). The signal-to-noise ratio is 20 dB.

.117 - .'

.097

.0771

.057

.037

... . Fig. 16. Results of applying various edge detectors to a binary airplane
image. Upper left: Original range (256 X 256 pixcels). Upper right:

.016 , 1 Sobel edge detector. Lower left: Hueckel edge detector. Lower right:
-. 951 .70 190 .190 .570 .951 New 2-D edge detector.

True Edge Location (circle has & radius of 1.0)

Fig. 13. Effect of additive noise on the slope of the edge line equation
for the proposed 2-D edge operator (solid line) and the Hueckel edge ceptable edge pattern was encountered on the input disk the
operator (dashed line). The signal-to-noise ratio is 20 dB. edge operator would generate the edge line equation as output.

For the purpose of display the edge line equation was used

the slope and on the quantity "p" for both the new edge and t set pixelSlest to theedge line to some predetermined
the Hueckel edge operators. As it can be seen from the fig- a binary output picture.

Fig. 16 shows the original picture, along with the result of Lures, the new edge operator outperform s the H ueckel edge th ap l c io of ur e g d t c or w h t at f e k l an
operator when estimating p and does almost as well on estimat- the application of our edge detector with that of Hueckel and

opertorwhenestmatig ~Sobel. Fig. 17 shows the performance of different edge opera-
ing the slope of the line. Note that the solid line corresponds tor

tors in the presence of noise (signal-to-noise ratio is 6 dB).
to the new edge operator and the dashed line corresponds to The criteria for acceptance of a pattern as an edge was based% the Hueckel edge operator.

on
IX. APPLICATION OF EDGE OPERATOR 1h, - hi IX (87)

AS AN EDGE DETECTOR

In this section, our edge operator was repeatedly applied to where

a digital picture of size 256 X 256 (see Fie. 15). The size of lh - h = magnitude of height difference for the
the input ;.sk used was that of Fig. S. and whenever an ac- projected ideal edge.

.L7,,:°"
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7..,77 "The method gives the edge location in closed form and re-
qures no interpolation or iteration. It is invariant to additive
and multiplicative grey level changes. The method assures
that the data are monotonic over each segment and thus each

". . edge region must be first detected before the exact location -
is measured. If noise is present in the data, it is often beneficial
to preprocess the data (averaging or median filtering) prior
to the edge location operation. It is noted that noise in gen-
eral tends to bias the detected edge location toward the center
of the data. Therefore the most accurate edge location can be
made when the edge is as near to the center of the data seg.
ment as possible.

Although the operator was developed to locate edges, it

may be used to locate other shapes. For example, a pulse
shape in one-dimensional data may be located by first inte-
grating the data and then locating the edge in the resulting
sequence. A thin line may be located as two-dimensiona]

Fig. 17. Results of applying various edge detector to a binary airplane data similarly by performing a two-dimensional integration
image uith additive noise (SNR = 6 dB). Upper left: Original image. ..al
Upper right: Sobel edge detector. Lower left: Hueckel edge detector, and locating the resulting two-dimensional edge. Other
Lower right: New 2-D edge detector. shapes may be located by first preprocessing (filtering to

remove unwanted frequencies), integrating (to give a mono-
A lower bound on the value of X can be found in the following tonic sequence), and fitting a parametric monotonic curve by
way. From (6) and (7) we have matching moments as described in Section IV.
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A MOMENT BASED TWO-DIMENSIONAL EDGE OPERATOR K

Anthony P. Reeves Mark L. Akey and 0. Robert Mitchell
School of Electrical Engineering School of Electrical Engineering
Cornell University Purdue University
Ithaca, NY 14853 West Lafayette, IN 47907

Abstraet The disk is defined to have radius of one. Thus the lim-
A two-dimensional edge operator is developed which its of integration are the unit circle i.e., 122+72 i. A
matches an ideal step edge to a window of data using closed moment set (CMS) of order n consists of alltwo-imesionl m ment. T is m tho reqire no moments of order n and lower and is closed with respecttw o -d im ensio n al m o m en ts. T h is m ethod requ ires no t o t e o e a i n r t t o , t a sl i n a d sc e ch g .
iteration and can locate edges to sub-pixel accuracy. to the operations rotation, translation and scale change.
Sensitivity of the operator to noise is evaluated both For the edge detector the CMS of order-2 is computed i.e.
theoretically and empirically. (MM. M0, MIS. Mob Mit, M20).

A rotation of the disk by an angle * changes the
moments as specified b

I. Introduetlon
M pq= sinm * ) 

p ' 
+ ~ - * M p .q- . ....It is often necessary to find straight edges in a digital r-* st-0 i1 n

image and to locate their position precisely. Many edge (2)
detection schemes have been proposed 11-31 which are First, to obtain 9, consider rotating the edge region so
based on gradient methods (such as Sobel) or template that the edge is aligned with the y axis as shown in Fig.
correlation (such as Frei and Chen). Edge location is 2. At this position there is symmetry about the x axis
more difficult, the most accepted method being that pro- therefore
posed by Hueckel 14-61. therefore

An edge detector and locator is proposed here which M= 0 (3)
matches a circular section of an image to an ideal step From (2) the value of MAC can be obtained in terms of 0.edge model using two-dimensional moments. This M;1 = M01 coo 9- MIS Sim 9 (4)
method is much simpler to implement than that of From (3) and (4) 9 is determined
Hueckel and appears to allow more accuracy and noise Mel
immunity. = taM'(5)

101. Defntition of the Edge Operator In order to determine the other edge model parameter,
the moment set is rotated by the angle I using 12) untilThe ideal edge model is shown in Fig. I and is the potential edge is aligned with the y axis as shown in

characterized by four parameters h, k, F and 0. The edge Fig. 2a. The value derived for 0 from (5) may need a
is a straight line which separates two regions of constant correction of x since there are two possible ways to align
grey values.The lower level has height h and the upper an edge with the y axis. A unique value of 9 is obtained
level is k higher than the lower level. The angle which by the additional constraint that Mi. > 0 this ensures thatthe edge makes with the y axis is o and o is the distance the higher level of the rotated edge is on the right and
from the center of the disk to the edge. the lower level is on the left in Fig. 2a.

The moments of an image fAx,y) of order p+q are The location of the edge, 1, may be derived from thedefined by rotated CMS {M ). In fact, only the moments with
M,= f f x'y'fqxj)dxdy (I) respect to the x axis i.e. (m; MI M2 } are required. This . .

Y

II

55- h+ k 2L

12h

Fig. I. Model of an ideal edge. (a) (b)
Fig. 2. a) Ideal edge aligned with the y-axis, b) Projection ofSupported in part by the U.S. Army Research Ofce. edge onto the x-axis.
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moment set corresponds to the moments of a projection M11. Implementation of the Edge Operator
through the edge model onto the x axis as shown in Fig.
2b. The moments may be specified in terms of h, k and I In order to compute the parameters, the 6 values of
by integrating of the elliptical shapes shown in Fig, 2b. the CMS of order 2 must be estimated then the model P

a a parameters can be computed. Each estimate is made by
= A2 " ld + 2k J Vl--Id, multiplying the elements in the local area of a pixel with

-I a weight mask and summing the results. First, M, and
2 Ii 4 k M,, are needed to estimate a by (5). Then to obtain the
2 - (8) rotated moments, use

M10

M 2x+2k i cos(+) = (16);P
-= sin(6}=) - " :

where
M. = VrM(171 - .(17

Mt A 2b x'-/idx + 211x' V/F dxM 1 +M,(7
These values can be used to obtain the rotated moments

.+  by substituting into (2).

4 a 2-" m
M =M. (18)

IT 2 (/i + smn'(U)) (8) -'(M!M2 + 2M,,M 10M11 + WM",M

Equations (6), (7) and (8) may now be combined to solve
fore i.e. Then 9 is obtained by substituting these values into (10), _S 0 , M ". -= M_.. _; ! (19) .-... ",

4 4 1 M3 M.4.- - ..

=4- (10) where
3Mb = I0M2 + 2M.1M10M,, + ?M.M2 ) (20)

Once C is determined the two values h and k may be
obtained by back substitution , (21)

k = ()---When needed the level height parameters can be com-
2/(1~e2)~ puted from (M.,Mb,Mc}. The procedure to obtain the edge

k = -k(x-2.ia-(9)-2I (12) parameters is as follows:

The other moments in the CMS, i.e. (M,,M ,,J4} may 1. Estimate {M1o,MeMM10 2,M1,M20).
also be specified with respect to h, 9 and K. Since there 2. Compute a from (5).
is symmetry about the x axis in Fig. 2a, 3. Compute M, from (17).

P= o, (13) 4. Compute the distance to the edge, U from (19)

M',= 0. (14) through (21).

To determine Mi consider the projection of Fig. 2s split 5. The edge height k may be obtained from (11).
into two components, if f > o. (When 9 <0 compute k  6. The background level h may be obtained from (12).

- 4
- the section of the k height disk). IV. Moment Value Estimation

Mf 2b f y VI"dy + kL y2/-dy In practice a region of an image is usually
-1 - represented by a matrix of sampled intensity values

V141 called pixels. In order to estimate the moments for a cir-
Sk y4 dy cular image from a set of pixels, several assumptions and

approximations must be made.
A circular region defined on a 5x5 matrix of pixels is

AS I (+ iv + in-'(Vrf)) shown in Fig. 3. The problem is to compute the exact
T 4i contribution (weight) of each pixel to each moment value.

The first assumption is that a pixel contains the mean

2rT-r 3 -I-) value of square region it represents.2 3 In Fig. 4 the three basic monomial functions are
! M - (34V' + 1 + 4 )2) shown in one dimension. If a pixel has a constant value
4 " and is competely inside then the contribution to a

moment function is proportional to the integral of the
Once C and k have been obtained for a potential edge the basis function in the region of the pixel. For a pixel
value for M, can be predicted. A figure of confidence can
then be generated by comparing the predicted and actual located at point i with width j, the pixel region is i - 2 to

values for Mi. Alternatively, the value of M,1 can also be i + I. For M. we have
used as a confidence measure. 2

-..- . . . . . ... .



subpixel within the circle to the moment value was then
summed. Since the sub pixels cover a very small area,
any sub pixels which were intersected by the circle boun-
dary could be ignored without significantly affecting the

.total summed value for the whole pixel.

V. Radial Weighting

Hueckel [31 has argued that the basis functions foron edge detector should diminish to zero at the edge of
the disk. That is, more emphasis is placed on the pixelsnear the center of the disk, the idea being that extrane-
ous, less-reliable information is more likely to be located
near the edge of the disk. If this assumption is made,

Fig. 3. A circular region defined on a 5 x 5 pixel matrix, then the edge detector should only be used to detect
edges near the center of the disk.

The moment basis functions, except for Moo, all have
greater valu--i at the edge of the disk than the center.

x0 Two radial weighting functions were considered for the
moment ed e detector. The first function VF- where
r = Vx" y"mis equivalent to multiplying the circular edge
region with a hemisphere and the second, 1 - r2 is
equivalent to multiplying the edge region with a parabolic
dome. Both functions diminish to zero at the edge of the
disk.

x
Hemispheric Weighting Function

Using a weighting function, the moment H, is

0 1 I.0 given by
a - H11 = p f xPy'v1 - (x2 + y2 )x,y) dx dy (25)

regio ofaiThe procedure for rotation normalization is unchanged by
region of a pixel the weighting function. The rotation normalized

moments with respect to the x-axis over the unit circle L -
Fig. 4. Three basis monorials and a pixel region width j. may be simplified toH5 f Xp (I - X2 qxy ,y d.."6

2+

f xdx = i (22) With some manipulation the edge location may be
IA. obtained by

21-1H 6.-,

Since j is constant for each pixel, the weight is the same 24H' (27)
for each pixel.

For M, we have Once I has been determined, k and h may be found as
i+ . follows:s 8Hjo
f xldxij (23) k 8(-- (28)

Xy(P- if2
2 3~

In this case the weight of each pixel is proportional to its h = 4 + 93) (29)
position. Weight masks for Mat and M,. can be generated
using this algorithm. The product of these two masks Parabolic Weighting Function
gives the mask for MI, since it is separable.

Finally for M we have Using a - r2 weighting function, the moment G, is
1+,L given by

1 +, 1241 0  
-- f f xjyqjl - (X2 + y2)Iqxy)dx dy (30)

f. xThe procedure for rotation normalization is unchanged by

the weighting function. The rotation normalized
In this case we get the expected i2j term which indicates moments with respect to the x-axis over the unit circle
that the position of the pixel squared is the dominant fae- may be simplified to
tor, however, there is also a small constant term which
must also be added. Masks can be generated for M2. and G = f x0 V f Ax,y)dy dx (31)
hI using (24). With some manipulation, the edge location I may be

Pixels whose regions are intersected by the boundary obtained by
of the circle must be treated in a special way. Since we 6G o- G (
only have to generate these masks once, a simple brute =32)
force method was used to generate the weights for these 5GI0

pixel for our experiments. Each pixel region was split Once f has been determined, k and h may be obtained as
into a 401 x 401 submatrix; the contributions of each follows:into a 01 x 40follows
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15G, located close to the center of the window. When the edge
k V is located at an angle of 45", the bias error increases con-

2M siderably. In this ease, the edge never is located along
__j +A 0~ 1,F11 ¢pixel boundaries. Shown in Fig. 6 is the bias error for

X - 31 edge locations ranging from 0 to 3.5 pixels from the
center of the window, and orientations of the edge rang- I

9(1 - 02)1/2 + -_ai_(9) (34) ing from 0* to 45. Although this bias appears
significant, the calculated edge location versus true edge
location is always a monotonic function, and thus a table "."

V1. Bias Effects Due to Pixel Quantisatlon look-up procedure can be used to subtract this bias effect
and give perfect edge location results when no noise is

The ideal edge that is fit to the data in Section M] present. S
does not allow for the quantization effects due to finite
pixel size in the real data; i.e., the gray value is assumed VI. Effects of Noise on Edge Location
constant over each pixel in the real data. This introduces
a bias error in the calculated edge location. This is Assume additive, independent, identically distri-
demonstrated in Fig. 5 where the difference between the buted, Gaussian noise is added to the pixel gray values.
calculated edge location and the actual edge location is The calculated edge location and orientation then become
plotted. The ideal edge pattern is generated assuming an random variables. Assume also that I is zero,
ideal continuous edge and a square sampling aperature consequently the moments need not be rotated. The ran- S
equal to the pixel size. The ideal edge is oriented verti- dom variable length can then be viewed as
cally and its location is varied from -3.5 pixels to +3.5 4M2 -M 3o + a, (35)
pixels from the center of a window of diameter 0 pixels. =+ n2 (35)
The error is zero when the edge location exactly matches
pixel boundaries. Also, the error is zero when the edge is where (35) is a direct extension of (10). The random

variable a, is zero-mean and Gaussian with variance

IIA 01__2 =f02'f f(4X2 - Ifdxdy (38)
,,U a where v2 is the variance of the additive noise and the

C - -- - -- integration is defined over the unit circle. The random
,Pw. ~1 variable n2 is also zero-mean and Gaussian with variance

., = 0 f f (3x) dxdy (37)

The variances of the random variables arise from the
C 114multiplication of the- additive noise with the moment
C masks described in Section IV. Since the noise values are

S,, " ,, independent, zero-mean, and Gaussian, the density of the
summation of N values remains zero-mean and Gaussian.
The multiplicative constants determined by the integrals
in (36) and (37) can also be calculated from the moment !masks; ie,
masks; i C' fi 'j4m2 o(ij) - m,(i,j)N (38)

C2 EE1'dj1 (39 Not5

Fig. 5. Bias error effects due to pixel quantization. Shown is
the difference between the measured location and the true edge so that
locatios, and is due to finite pixel size in the moment calcula- V = o2

C (40)
tion. The three cases shown are for unweighted (A), hem- o--o 5C2  (41)
isperic (B), and parabolic (C) window weightings. '. (41)

where m. 0(ij) is the n" moment mask weight for the i' ,j--
pixel position withing the mask window. For a 9 x 9 S
mask window set, these multiplicative constants are:

Unweighted: C, = 0.1307
C2 = 0.3067

Hemispheric: C1 = 0.046s
C2 = 0.1082

Parabolic: C, = 0.0287
C2 = 0.0547

Since these constants are less than unity, the variances of
&I and a, are less than the variance of the additive noise
alone.

The numerator and demoninator of (35) can now be
viewed as the quotient of two independent, non-zero0 mean Gaussian random variables. The means of the
numerator and denominator are simply 4M2 -M0 and

Fi*. 6. A three-dimensional plot of the bias error for edge 3M1 4, respectively, while the variances are that of s, and
onentatione ranging from 0 to 45', and location ranging from n2. Therefore, the length has a Cauchy-like distribution.
0 to 3.5 pixeb. The Cauchy density has no absolute moments 171. The
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probablity desnity function for the quotient of two The rmodom variable, s antd n, are indepenlent and
Indepndent, non-zero mean Gaussian variables X, and X, zero-mean Gauqsian. The variances are given by

w = f (42) af y
2 dydx = o2Cl (48)

is iven by u =o 2 Jfxdxy=o1 C, (40)
p(w) = p(w), -- e<w<-l (43) where oa is the variance of the additive noise and the iim-

= pj(wl, -I<w<o its of integration are the unit circle. The mean values are
M and MI,, respectively. The multiplicative constants

=NW D <W<1 can again be obtained from the moment masks
p,'(w), ,<w<oa

where Unweighted: C, = 0.034072
ft ,~zllC 4 = 0.034072

p 11,w) =-exp + Hemispheric: Ca = 0.012022
2w 12I I LUt? I C =0.122

S ' Parabolic: C, = 0.0076
(2jX (2ko t f - JC4 = .oo06 e .,

.10,I) FEi+k+l+ll k.The density function of * is similiar to that of the

l [_ , ' s [_length with the transformation
a ,£ = t-'W = 1,-I (50).

*~j(2m+)I(2m+1) U1 U,

rf',,+a+p+2) For an edge location of one pixel, a true value of e equal
to 45" and a signal-to-noise ratio of 20dB, 1000 indepen-
dent experiments were performed. The sample mean was ..

0< uml <1 (44) 44.99, the standard deviation was 1.582", and the

*and median value was 44.89'. Again, the median and mean
I i-II M? ,411value show little difference.

P*(w) X pI- [- -t j Figs.7-10 represent the mean error and standard
deviation of the length for signal-to-noise ratios of 8 dB

Go* I I p/fi r,, and 20 dB. The edge locator performs quite well when
(2() TA I &I the edge location is within 2.5 pixels of the center. The -

RMS error is maximum at the extremes of this region.
-w fi+k+l+l The RMS error for the 20dB SNR case at 2.5 pixels is

only 0.2 pixels. As can be seen in Fig.10, the effects of
., , v~ f( ~noise can be reduced by using the radially weighted - .

( - *EEE j lpjji - I l i 21 operators as compared to the unweighted operator. This . .-
* , y (2m+1j r i2 r reduction is greatest near the center of the window.

r-X . +o+p+2) However the weighted operator's performance is reduced
p(-1) ' when the edge location is not near the center of the

1< I"1 <o0 (45) window.

An ideal edge oriented vertically and located 1.0 pix-
els to the right of center is generated and random noise is
added to each pixel. The signal-to-noise ratio is defined

as A

SNR = 10 )1t* dB (46) Im a .-.------.

where k is the edge height difference (11) and at is the
variance of the additive noise. One thousand indepen-
dent experiments are performed and the statistics of the
measured edge location are recorded. The signal-to-noise -
ratio is set at 20dB. The sample mean and variance that
were recorded are 0.980 pixels and 0.00885 pixebl, respee- -
tively. Since the density is Cauchy-like, the moments L
should not exist in a strict mathematical sense. There- I .
fore, a ranking method is chosen as another statistical
measure. The median is used and it's value is 0.0988 pix-
eis. Since the sample mean and median are very close in
value, the mean is retained as a valid measure. also .5 -15 - * U Ii ,i -."

The variability of 0 is now considered. Again, zero- .. .. ,,1 (I ... .,,
mean Gaussian noise is added to the data. The noise .d_..,
ease can be considered the extension of (5) such that

Ka + R3 Fig. 7. Sample mean of edge location error versus true edge
[_,_ _(47) location. The weighting. used are unweighted (A), hemispheric

MIS + 0, (B), and parabolic (C). The signal-to-noise ratio is 20dB.

,* *~~. .* - - . . . . . .*.
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Fig. a. Sample standard deviation of edge location error Fig. 10. Sample standard deviation of edge location error
vrsus true edge location. The weightings used are unweighted versus true edge location. The weightings used are unweighted
(A), bern pheric (B), and parabolic (C). The signal-to-noise (A), hemispheric (B), and parabolic (C). The signal-to-noise
rateis 20dB. ratio is 6dB.

V111. Conclusions

AA new two-dimensional operator has been defined
_________________________which can accurately locate ideal edges in the presence of L

noise. The edge orientation and location is calculated by
estimating two-dimensional moments directly from the

r -pil values within the window and requires no iteration.
operator can be used as an edge detector by calucu-

lating a confidence measure that indicates how well the
Miideal edge matches the empirical data.
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Data consist of aerial digital images with ground targets in the form of crosses of
different dimensions and orientations. Location and recognition of the targets relies on
Fourier descriptors and on two-dimensional moments. Further processing employs least
squares adjustment of the target shape in order to precisely determine the position (X .. . -

and Y) and orientation 0 of each cross to a fraction of a pixel accuracy. Results are
given from tests with synthetic crosses on a real terrain digital data base. Accuracies
achieved have reached to within 0.03 - 0.05 pixel. Digital image compression has shown
to cause cross targets to shift in location by as much as 0.5 pixel.
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1. Introduction

Modern photogrammetrists are expected to increasingly deal with digital images.
Such images are either directly acquired, as for example by push broom line arrays or
multispectral scanners, or indirectly through digitizing photographs. The primary
interest has been, and will continue to be, in the extraction of accurate geometric infor-
mation from the images. This information often concerns well defined features such as
edges, lines, crosses, and the like. p

Working with digital images allows the photogrammetrists to avail themselves
with a variety of digital image processing operations for different purposes. The
characteristics of these processing operations are known in general terms to those speci-
alizing in image processing. However, to the authors' knowledge, their precise effect on
the geometric integrity of the imagery is neither known, nor has it been investigated.
Needless to say the photogrammetrists need to know such an effect so that they may be
able to properly provide the metric information from the digital images as well as their
associated accuracy.

The paper is considered to be a complement to another paper presented by the
author at the 30th Photogrammetric Week [7]. The overall objective of the research is
the ability, and the accuracy with which, to extract metric information from digital
images, and the influence of digital image processing algorithms on the accuracy of such
information. The paper in reference [21 covered the chronological development of the
research effort. Because of the theme of this Workshop, this paper will concentrate on
the automated aspects of the work. We will discuss first the location of edge features,
then that of crosses.

2. Edge Location using Moment Preserving Method

The method of edge location by moment preserving is described in more detail in
[11], and developed at the School of Electrical Engineering, Purdue University.

For simplicity, let us first consider the one-dimensional case, in which an attempt
* is being made to model a set of data to an ideal step edge as shown in Figure 1. The

three parameters defining the edge are: h, the signal value below the edge, h2 the signal
value above the edge, and X the location of the edge. Moment preserving is used as the
criterion of best fit of a set I of n data points to the ideal edge f(s). Rather than solve

directly for X, the edge location is defined as k + 1/2 where k is the (unknown) number
* of samples below the edge. Since there are three unknowns, we set the first three sam-
*. pIe moments equal to those associated with the ideal edge, that is:

+ n h2i, for- 2,3(
S

where

O-

*: ..-.-.-..:.. .
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ni= ± lii (2).,.i.

is the jtb sample moment, and j is a power. The three equations given by (1) may be

solved directly in a closed form. In particular, the solution for k is given by

ck(. ( 3)_',.="

where

c Mln3 2 - .2M'

is the skewness of the data, and AR

From equation (3) it is clear that k need not be an integer, and therefore sub-pixel edge

location is obtained directly. This method of edge location assumes that the data con-
sists of monotonically increasing values. This will not be the case if noise is present. D
Preprocessing of the data to smooth out noise oscillations improves results significantly.
Moment preserving is very simple to apply, and yields unbiased estimates if the edge
lies near the center of the area considered. Reduction of any biasing effects are
obtained by recentering the a-rea to be modeled with an initial solution.

3. Least Squares Location Model

Let f(s,t) represent the output of a perfect imaging system, that is, the ideal pie-
ture function. Consider next a linear, spatially-invariant imaging system with a nor-
malized poii. -spread function p(s,t) assumed known. Then let l(s,t) denote a random
variable representing the measurement at sampling position (s,t). We may model the

measured quantity using the convolution

i(s,t) = f f f( ,j) p(s-C,t-q) ddq (4) S
-00 -00

Consider now a set of u parameters x which completely characterizes f(s,t) over the

region of interest. Equation (4) may be rewritten as

I(s,t) - f(s,t;x) * p(s,t) = 0 (5) 9

where * denotes the convolution operation.

Then for the ijth picture element which is a sample of i(s,t) at s - si, t - ti, we may

write a linearized condition equation of the form (dropping (s,t) for simplicity)

iij + vi= ij -Fij(x O) (6)

where

. . ".

,. -. ... -. .. -. . .. ,- . -. , .. . - .. . - ... : ... . , .. , . ... .. - .. , : , ... .... .-... . .. , ., , .. .-': ;.
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iiO is the initial estimate for the observation,

vii is the measurement residual,

F x ) = -f() * pij,

B.. is the set of partial derivatives of Fii(x) with respect to the parameters,
evaluated at x =

x! is the set of initial parameter approximations, and

i d the set of corrections to the parameter approximations.

Equation (6) represents a single condition equation for the model known as Adjustment
by Indirect Observations. The total set of equations can then be solved by forming the
normal equations in the conventional manner [5].

One-Dimenslonal Edge

Consider the ideal model of an edge or discontinuity present in a one-dimensional
signal f(s), as shown in Figure 1. This may be expressed as

L
f(s) h hI + 0h2 -h 1) U(s-X) (7)

*where U is the unit step function

U(s) I, s>0

0, s< 0

The one-dimensional form of equation (4) is:

Is) = f(s), p(s) (8)

where p(s) is the system line-spread function. It can be written in the linearized form -

of equation (6). If p(s) is a Gaussian function, the spread edge will take the general
form depicted in Figure 2.

Other spread functions, as for example a rectangular function, can be used. It is
also possible in the least squares solution to "self-calibrate" by estimating the parame-
ters of the selected spread function. Thus, in addition to hl, h2, and X t,'!e Figure 1), a
parameter d, representing the width of the spread function, is also estimated. Table 1
summarizes some of our early results from both methods.

.....-..-...... •.....-.-.......-... .-...-......-.. _. -. . . .-.- . --.. -, -.. -...-.
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Data Characteristics Root Mean Square Error (pixels)
Spread Spread Noise Moment Least
Width Type Level Preserving Squares

0% 0.073 0.000
Rectang. 1% 0.074 0.010*

10% 0.192 0. 106*
I pixel

0% 0.027 0.003
Gaussian 1% 0.032 0.015

10% 0.223 0.164

0% 0.007 0.000
Rectang. 1% 0.024 0.023

assumed 10% 0.299 0.231

unknown 0% 0.011 0.000
Gaussian 1% 0.033 0.033

10% 0.384 0.346

Table 1. Edge pointing with simulated data. The starred (*) values were obtained using best param-

eter approximations.

The tests made were limited to simulated data with two types of spread function,
and therefore all statements regarding the performance of the algorithms should be
interpreted with this in mind.

1) The least squares model using a rectangular spread function of known width did
not function well in the presence of noise. This was due to the fact that there was
no redundancy for the determination of the edge location, and because the form of
the condition equations could lead to improper convergence when poor approxima-
tions were used. -

2) The least squares model using a Gaussian spread function of known width, per-
formed well in the presence of noise. There was no instability associated with high
levels of noise nor with the use of parameter approximations which were poorly
selected. .

3) The extended least squares model, in which the width of the edge spread was
determined, performed well for both types of spread function. It is believed that
the case with the rectangular spread function did not exhibit the same instability
as the previous case because the number of measurements provided a redundancy
for the determination of all parameters. This indicates that the original model
would have operated satisfactorily had there been more than one measurement in

the spread area of the step. "1
4) The precision of the estimate of edge location is dependent only upon the width of

the spread function and the signal-to-noise ratio. It does not appear to be

adversely affected when the width of the spread function must also be determined.
The adjustment is also relatively insensitive to variations in the position of the
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edge within the area being modeled, provided that the edge is at a distance greater
than the spread width d from one extreme of the step.

5) Comparison with the method of edge location by moment preservation indicates
that for the regular model the least squares fitting provides the better solution.
For the extended model, the two methods give comparable results at low levels of
signal noise. The most noticeable difference is for the case of perfect data, that is,
without added noise, when the least-squares method yields errors only due to
round-off. In no case does the method using moment preservation yield smaller
errors than by the least squares technique.

6) The extended least squares model has the advantages of providing estimates for
both edge location and edge spread. However, when compared with the moment
preserving method it is computationally less efficient, and also requires initial
approximations for all unknowns. The moment preserving method contains a bias
when the edge is not located near the center of the area under consideration. This
is not believed to be a serious problem in most practical cases. The results indi-
cate that the method of moment preservation offers a reliable solution to the prob-
lem, without requiring any assumptions or modeling of the spread function. How-
ever, the method of least squares has the potential of providing higher accuracies, . -

particularly if started with good approximations. Investigations with the cross tar-
gets to follow substantiate this fact.

4. Investigations with Cross Targets

The main task of this investigation is composed of two steps: 16

(1) The automatic detection and approximate locations of several cross targets in a
large image using procedures based on pattern recognition and feature extraction tech-
niques; and

(2) Precise determination of the position of each cross target center using the least
squares algorithm.

Each of these tasks is briefly discussed separately.

4.1. Automatic Detection, Recognition, and Location of Cross Targets

An algorithm has been developed to detect, recognize, and locate ground cross-
targets in digital aerial imagery. The algorithm accomplishes these tasks by extracting .
three major features from the the ground data. Local grey level maxima which
correspond to possible cross targets serve as a detection feature. The Fourier descrip-
tors of the contour of these targets provide recognition of the cross as well as approxi-
mate location, orientation, and size of the cross. Finally, the two-dimensional moments
determine an accurate location, orientation, size, and grey level for each cross. Addi-
tionally, a modified version of the algorithm has been developed which uses only the

.'-S ..
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Fourier descriptors. Each of these tasks is discussed in the following subsections.

4.1.1. Detection -

Detection of local grey level maxima is a relatively fast and simple procedure when
working with large digital images. Since the grey level of each cross is greater than
that of the cross's surrounding background, the cross can be viewed as a local max-
imum.

To implement local maxima detection, two processes are needed. First, to insure
that true maxima are detected and not those maxima that are attributable to system
noise, atmospheric effects, etc., a circular convolutional low pass filter is applied to the
data. In general, the filter 141 can be expressed as

g(x,y) = f f f(a,O)hx-a,y-)dd (9)dad#

where f(x,y) is the original tw,%o-dimensional image, h(x,y) is the filter function, and
g(x,y) is the resulting filtered image. Specifically,

1 <
h(x,y) = /x2 < r..

7rr2

0, elsewhere (10)

where 2r is the diameter or size of the window. Assuming that the size of the convolv- -
ing filter window is smaller than smallest expected cross size, the grey level structure of
the low pass filtered cross can be viewed as a local maximum in two-dimensions.

Second, given that the two-dimensional local maxima are present, a process must
be developed to find the peakU of these maxima. To implement this feature, each point
in the image is considered. At each point (called a hub point), the image is observed in
each of eight directions extending radially away from the hub point. For each direc-
tion, the grey level of each data point in that direction is compared to the hub point.
If each grey level is lower than the hub point and if one grey level is lower by a
specified amount, and the distance from this point to the hub point is less than a given
distance, then the hub point is a local maximum in this direction. All eight directions
must be satisfied in this way for a hub point to be considered as a two-dimensional
local maximum.

All point locations which are detected as two-dimensional local maxima serve as
possible cross locations and only these locations are considered for further analysis.

4.1.2. Recognition

The recognition process accomplishes two tasks. First, the process needs to -
discriminate buildings, road intersections, and other physical objects from crosses since
all these objects may be two-dimensional local maxima. Second, given that the object

-~~~ -, -, --
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is a cross, the process must recognize it's approximate two-dimensional orientation,
size, and location.

Recognition is accomplished with the use of Fourier descriptors. To obtain the
Fourier descriptors of an object, the image must be grey value thresholded to yield a
binary image. If the threshold is chosen correctly, the object will be segmented from
the background data. Typically, many thresholds are tried to successfully segment the

data. A Fourier transform is applied to the contour or boundary of the segmented
object to produce the object's Fourier coefficients. The coefficients (descriptors) are

normalized for comparison to the coefficients of a "true" cross. If the descriptors match
those of a cross within a specified accuracy, the object is classified as a cross. If the
descriptors do not match, another grey level threshold is selected for segmentation until
the descriptors match or until all the possible thresholds have been exhausted in which
case the object is rejected as a cross.

The boundary function of an object can be expressed as

-1(t) = x(t) + iy(t) (11)

where x(t) and y(t) are the x and y position of the contour at time t as shown in Figure

3. The boundary function is complex to provide for changes in both x and y, i.e., x
positions on the real axis and y positions on the imaginary axis. Also, by tracing

around the contour in a counterclockwise direction, '1(t) becomes a function of time.
The total time to trace around the contour at a uniform speed is one period T. -

Given that -y(t) is a continuous, bounded, periodic function, -Y(t) can be expanded -"

into a Fourier series [3],

i2Irn t
Myt = %e T (12) a...

n=-00

where

T .2"rn

cT dt (13)
T°0

A great deal of work has been concentrated on Fourier series expansion 12,8,101.
Stemming from this work are a few fundamental properties. Particularly of use is the
ability to translate, rotate, scale, and move trace starting point.

Translation: If an object is translated by

zo = xo + i yo

then

qt) ='Yt + zo .

which implies

.....-...-.
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Co = CO + Z0

n, 0 P

Rotation: If an object is rotated about the origin by an angle a, then the
coefficients have a constant phase term added such that

-1(t) = (t)e i'

then

en = c e2 '

Scale: If an object is scaled by a factor X, then -'

en n
'9(t) = h,-(t) ]

Starting Point Shift: it the starting point of the trace is shifted by to, then t

St) = to)

2rnf en0
1 = cne

N-told Rotational Symmetry: If an object exhibits N-fold rotational symmetry
about the origin, then the same trace can be obtained by rotating the object by an

integral multiple of the angle a----- and moving the starting point clockwise by

kT

kT 1 .,", t)= -(t ---- e ..:
N)

en 0 0, (n-1) mod N =0 L

n = 0, elsewhere

For discrete images, the contours that are traced are polygons. The polygon con-
sists of linear increments in time and position, and therefore is piece-wise continuous.
The Fourier coefficients can be determined from these increments by the discrete
Fourier transform (DFT). The coefficients as given by the DFT are.( IL1 ,n tv 2 m t

T -1 T - T .

en T 4 A t -e , ns0 (14)
4r 2D2 piAtp ~

where t = A ti to 0, k is the number of sides on the polygon, and T = tk. For the
1=1

,'. .b ''
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co0 term,

co + $-.IAtp (15) p.

where -tp -  +p-l + - 1p•

If an eight-directional chain-code is used in representing the discrete contour (Fig.
4), the implementation of the DFT becomes relatively easy. A look-up table can be
used and indexed by chain-code.

Due to the four-fold symmetry and the concavity of the cross, many of the Fourier
coefficients are zero. In fact, only the -7, -3, 1, 5, and 0 order coefficients have non-zero
values among the first 8 harmonics. The zeroth order coefficient relates the position of
the center of the cross (center of the contour). The other four coefficients are each •
spaced by four, verifying four-fold symmetry. Comparison of these coefficients with
those extracted from contours of other objects show very little similarity. Few objects
show four-fold symmetry and those that do, such as square buildings, are not nearly as
concave as the cross. Thus, the Fourier descriptors provide an excellent set of features
for discerning crosses from other ground objects.

Additionally, the Fourier descriptors provide information on location, orientation,
and size. In fact, the descriptors have to be normalized with respect to location, orien-
tation, and size before direct comparison of the coefficients can be made. As mentioned -
above, the zeroth coefficient provides the location of the cross.

e= + iy (16)

where 3" and y correspond to the center of the contour. The combination of the first
and minus third coefficient yields the angle of rotation with respect to the x-axis.
Determining the angle requires the use of the Fourier series properties. Since the cross
has four-fold symmetry, the next largest coefficient is c- 3 (c is the largest). To normal-
ize the coefficients, both 0,' and must equal zero, i.e.,

en ei(nto + )  (17)

" to + a (18)

-3to + a (19)

Solving for to and a using Eq. (18) and (19) yields

to : 01- ,O (20)

4.j......
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o = (21)
I+ . •3

4

Thus, a is the angle of orientation. And, simply the ranges in x and y on the contour
determine an approximate size of the cross.

Only those locations which are recognized as crosses are passed along for further
analysis, along with their corresponding location, orientation, and size.

4.1.3. Locatlon

Two parallel schemes have been developed to accurately locate the crosses as well
as determine orientation angle and cross grey level heights. Both schemes use the
preprocessed data provided by the detection and recognition routines previously dis- .
cussed.

Locatlon using Momenta

In general, the cross' grey level heights (h, and h2) are distributed among neighbor-
ing pixels according to the location and orientation of the cross. Since the grey values
of the pixels hold much of this information, a process which uses the grey levels of the
cross as well as the general shape should do well in estimating location and orientation.
The two-dimensional grey level moments meet this requirement.

A window of data is extracted from the original image. The location of the center
of the window is determined from the Fourier descriptor location results (recognition
routine). However, rather than using the typical square window, a cross-shaped win-
dow is used. The orientation of the cross-shaped window is determined by the Fourier
descriptor orientation result. The cross-shape is amply large enough in width to extract
the largest expected cross width. The size of the cross-shaped window is determined by
the Fourier descriptor size result.

The window is used solely for noise reduction and does not bias the resulting loca-
tion and orientation. To insure that no bias is instilled, the average background grey
level is subtracted from those grey levels in the window, saturating at zero grey level.
Then the window will contain only the cross grey levels with no background grey level

present. The two-dimensional moments of the window are calculated. For an image
f(x,y), the (p+q)th order moment 191 is given by

ffxPyqf(x,y)dxdy (22)

The normalized first order moment in x and in y respectively determine the center of
mass of f(x,y), i.e.,

- 1 (23)

M OO* . ."."
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MO, (24)

Since the cross is symmetric, this is the final estimate of the cross location. After the
moments are translated to this location, rotational moments are used to determine the
angle of the cross. To translate the original image f(x,y) by an amount (a,b) the follow-
ing transformation is performed on the original moments _

Mp'= jJJ P M 6  (25)
r0 sr=O 8=0 .

For example,

M20# = a2 Moo + 2aM1 o + M20

Due to four-fold symmetry, the fourth order rotational moments must be used to deter-
mine the angle of orientation. Rotational moments are complex and are defined by

Ir 00

n J r n + ei f(x,y) dr dO (26)
-r 0

The rotational moments may be obtained from the original moments by the transfor-
mation

n-I fATI IN.
2 1 21

n k Mn-l+k-2j,l-k+2j (27)i=o k=O .-''';

However, when the image has k-fold symmetry only the Fkk rotational moment needs
to be examined to determine the orientation angle.

Fkk = j ()J [ j (28)j= o .

For four-fold symmetry
4 I

F 44 = j (i)j Mj,4-j
j= 0

M04 -i4MI 3 - 6M22 + i4M31 + M40 (29)

The angle of orientation is

4 'Fkk OF..

k 4

It
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l 4(M31 M13)-4" a- M04 - 6M22 +I M40 $

Finally, the background grey level is determined 'y the average grey level around the

cross, not including the cross, and the grey level of the cross is estimated by the grey

level at the center of the cross.

Location using Fourier Descriptors -

This method of determining location is similar to that used in the recognition

phase of the algorithm. In that phase, different grey levels are used to threshold and
binarize an object at a specified point. The Fourier descriptors of the contours of the

binary object are compared with the Fourier descriptors of an ideal cross. If the

descriptors matched within a specified error, the preliminary location and orientation
determined by the descriptors are passed on to the final location process.

To determine accurate location and orientation of the cross, many grey level thres-

holds are used. Each grey level threshold produces a contour and therefore an estimate
of location and orientation of the cross. Of those thresholds that produce acceptable

Fourier descriptor results, only the best fifteen descriptor results are retained. Since

the Fourier descriptor error measures the match to an ideal cross, the error may be

used as a confidence number. The lower the error, the greater the confidence. This
confidence number may then be used as a multiplicative weight with which to multiply

the location result. The fifteen best confidence numbers multiplied by their respective

locations are summed to give the final estimate of the location. Likewise, the final
orientation angle is estimated using these weightings, also.

Each location determined by the Fourier descriptors is a sub-pixel result. How-

ever, determining the correct grey level at which to threshold the image is not com-

pletely evident by the Fourier descriptor error alone. The best location result from a
single contour does not typically occur when the Fourier descriptor error is at a
minimum. Fortunately, good, consistent results are obtained near the grey level thres-

hold that results in the minimum Fourier descriptor error as well as the threshold that
results in the best location.

Therefore, using an averaged result gives a reasonable good estimate of the location,

but not necessarily the best result. Additionally, the averaged estimate is less suscepti-

ble to noise variations, and thus results in a more confident answer.

4.2. Precise Target Location by Least Squares

The least squares model given in section 3 is extended and applied to the cross tar- _
get. Figure 5 shows a cross which may be considered to be formed by a set of four rec-

tangular components, Ri, i=1, .',4, each with dimensions W by 1/2(L-W). The

.a,. ..-."., -.- - . ..'.. , . , - ...-. "... . .. . . . a~ a A . a
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parameters to be estimated by the least squares method are:

(a) Coordinates of its center, (X,Y);

(b) Orientation angle 0;

(c) Background and cross grey levels, hI and h2

The length L and width W, (Fig. 5), are not directly and simultaneously estimated by
least squares at this point. They are calculated separately and input into the algo-

rithm.

The general form, Eq. (5), is linearized to the form in Eq. (8), where A is a 5 by 1
vector of unknown corrections to approximate values for X, Y, 0, hl, h2. Because the

details of the derivations are rather involved, they and attendant assumptions are not
included here and may be found in reference [121.

5. Experimentation with Cross Data

Two different sets of data have been used for the various experiments. Each is
briefly described next.

5.1. Fort Sill Synthetic Images

The digital image files generated for the purpose of measuring the positions of
crosses made use of the simulation package SIM previously developed at Purdue
University and described by Mikhail et. al. [6]. SIM makes use of an augmented digital
data base containing both elevation information and quantized density values from a
digitized orthophotograph. This is the source from which imagery may be generated
which bears the attributes of an aerial frame photograph, but in a digital form. The
data base used contained 1778 rows by 1117 columns each, representing the Fort Sill
area of Oklahoma. It was derived from aerial photography flown at a nominal scale of
1:50000, and the spacing between data base elements amounts to 4.8 meters at ground
scale. The surface defined represents rolling terrain, with elevation ranging from 350 to
550 meters above sea level.

The program makes use of the collinearity condition as the basis for defining an
artificial photo ray which systematically scans the object space. The appropriate image
element grey shade is assigned by first determining the intersection of the photo ray
and object space surface, and then applying suitable interpolation in grey shade from
the four adjacent data base elements. By searching for the surface intersection closest
to the camera station, hidden surfaces are effectively removed. The images thus pro-
duced simulate the photographic perspective with user-defined interior and exterior
)rientations, with all inherent displacements due to relief and tilt. As presently writ-
ten, SIM uses a bilinear interpolation in elevation and in grey shade, but both can be
redefined easily.

:i:" ..... ? 2 7
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It is possible to superimpose artificial targets in the terrain model by assigning new
grey shade values to specific data base elements. In this way, such targets are included
in the image synthesis process, and appear as other natural features in the resultant
digital image file. By recording the location of the data base elements modified, the
ideal location of the imaged target may be easily determined. This provides a set of
ideal image coordinates, which are used to evaluate the errors associated with a given
target positioning algorithm. Such an approach has been used in the past in the hard-
copy measurement of dot and cross targets, by Unruh and Mikhail [13].

Minor modification of the SIM package was made to permit the generation of
several image segments within one program execution, each with the same interior and
exterior orientations, but containing only a small portion of the whole image. A single
image coordinate system was preserved by the recording of a false origin for each sub-
image. Therefore, the location of any feature could be referenced to an overall image
system defined by the orientation parameters. This approach was implemented to
allow the efficient use of SIM, since it was not at all necessary to generate a large
image, but only a set of small images each containing a feature of interest, all refer-
enced to one coordinate system.

In one experiment, a set of nine image files were generated. The exterior orienta-
tion was varied, by assigning combinations of three different values of the primary rota-
tion omega (w) and three different values of the tertiary rotation kappa (1c).

Thus ic took on values 0 ° , 200, and 450, and w was 0,50, and 150. Within
one file eight cross targets were imaged. In all cases, the ratio between the average
pixel spacing and the data base element spacing was very roughly 1.0. Therefore the
approximate dimensions of the crosses in the resultant images were 5 pixel's length by
1 pixel's width.

Table 2 summarizes the results from the first set of experiments. As mentioned
previously two types of spread functions were used, the rectangular and Gaussian. The
range in root mean square errors in X or Y is from 0.033 to 0.086 pixel, with one case
yielding the relatively high value of 0.394.

*-.-..
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Image With Rectangular Spread With Gaussian Spread

RMSE RMSE RM RMSE RMSE RM
.2 .2MIW 60or 0. or 00

(pixels) (degrees) (grey levels) (pixels) (degrees) (grey levels)
0/0 0.051 0.08 13.0 0.086 1.55 13.7
0 "/5* 0.052 1.08 13.0 0.041 1.53 13.5
0"/15" 0.062 2.38 14.2 0.054 2.70 13.6
20-/0- 0.065 1.38 14.0 0.066 2.14 13.7
20'/5" 0.041 1.66 13.5 0.048 2.36 13.1
20"/15" 0.045 2.80 13.0 0.048 3.01 12.7
45-/0 0.033 0.08 12.7 0.040 1.20 12.6
45-/5- 0.304 22.14 16.7 0.300 22.02 16.6
45/15 0.041 2.68 13.1 0.038 2.63 12.6

Table 2. Cross pointing on imagery with various orientations. Lach image contains eight type I cross targets

of dimensions roughly 5 by I pixels.

It can be seen in Table 2 that the low accuracy levels associated with the imagery with
ic of 45 * and w of 5 * are accompanied by large values of root mean square error in 0.
Closer examination revealed that these values are larger than the average due to the
poor performance of the pointing algorithms in two instances. In these particular
instances, the initial approximations for 0 were 0 , when in fact the true values should
have been close to x (45 ). These poor approximations appear to have allowed conver-
gence of the adjustments to local minima, and resultant residuals in the final estimates
were on the order of 45 * in orientation and 1.0 pixel in position. The approximations
were calculated by a very simple procedure employing cross-correlation with cross tem-
plates. The use of pattern recognition and feature extraction algorithms for deriving
approximations totally alleviates this problem as shown later on in this paper.

5.2. Experiments with the Arizona Test Data ".-.

Another test image was obtained by generating cross targets on a digital image
using the Arizona test data. This test data was derived from a digitized stereo model
formed by two nearly vertical images taken in October 1066 near Guadelupe, Arizona.
The cross targets were superimposed on the digitized image.

A 512 x 512 segment of the digital image is used. Twenty-five cross targets were
randomly selected and placed on the image. Cross sizes with aspect ratios of x7, lx0,
and 1x13 were used. These ratios are considered more practical than the lx5 ratio used
in earlier experiments. The crosses were arbitrarily rotated at various orientation
angles. Furthermore, noise was added to the crosses according to a distribution having
the same standard deviation as the image background around each cross. It is recog-
nized that this is a severe amount of noise, but we felt that if the algorithms performed
reasonably well in this case that we can be confident of the results from other cases
with less noise.

. . . . . . . . . . .. ...... . . . . . . . . . . *
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Table 3 lists the RMS values calculated from the discrepancies at the 26 crosses
for four different cases. Case A is the moment-based method. In case B, only the
values of X,Y, 0 from the moment method are used as approximations in the least
square algorithm. In case C, all five values of X,Y, ,hl, h2 are entered into the least
squares algorithm. Finally, case D is the same as case C, except that instead of using
fixed values for the cross length L and width W, a simple routine is written to estimate
these two parameters prior to entering into the least squares algorithm. The last case .
D gives the lowest JiMS values of about 0.05 pixel in X and 0.03 pixel in Y, and may
therefore be considered as the best that can be expected.

Case RMS X RMS Y
(pixels) (pixels)

k Moment-based Method 0.200 0.182_ IMI
B Moment & Least Squares (3 param) 0.059 0.057

M/LS (3)1 "__"

C Moment & Least Squares (5 param) 0.050 0.036
IM/LS (5)1 )

D Moment & Least Squares (5+2 param) 0.053 0.029
MILS (5+2)1 ___-___

Table 3. RMS values for different cases.

Accepting this level of accuracy in determining the location of crosses in digital
images, the next phase of the investigation concerns the effect of image processing
operations on the location of such targets. The first image processing operation con-
sidered is image compression as discussed in the following section.

6. Geometric Effect of Digital Image Compression

The next group of experiments made use of image files over the Arizona test area
with 24 superimposed cross targets, as discussed in Section 5.2. Here, however, two
different images are used; one in which the cross targets are without any noise (thus •
simulating reseau marks), and the other with added noise. At each target, the added

.1 .

noise has a more realistic standard deviation which is I of the background standard
4

deviation around the target. For each of these two sets four cases are considered. (See
Figure 6 as an example) S

1. The original image at 8 bits/pixel

2. An image which has been compressed to 2 bits/pixel

3. An image which has been compressed to 1 bit/pixel

4. An image which has been compressed to 1/2 bit/pixel

p

. ............. ,. ...
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In cases 2, 3, and 4, a two-dimensional adaptive cosine transform was used as the
compression algorithm [11. For each of the eight possible image files described above,
two different processing procedures were used:

A. An algorithm based on Fourier descriptors and moments is used for detection
and location, followed by the least squares algorithm for precise positioning.

B. An algorithm based only on the Fourier descriptors (i.e. without the use of
moments) followed by the least squares algorithm.

Therefore, there are 16 cases in total. Unfortunately, we missed one case, and hence
the results of only 15 cases are given. We used the letter F to denote Fourier descrip-
tors; M to denote Moments (after Fourier); 8, 2, 1, and 0.5 to represent the compression
cases; and the prefix N to indicate cases with noise. A general remark from these cases L

is that as the number of bits decreases the location of the crosses changes which implies
geometric shift. Furthermore, due to significant distortion to some crosses, the algo-
rithm does not recognize them as such and therefore the total number of crosses is
reduced. As an example, only 9 crosses out of a total of 24 were found as crosses for
the case of 0.5 bit/pixel for noiseless data using the Fourier descriptors. L

The results for fifteen cases are summarized in Table 4. Considering the original
imagery (8 bit/pixel), the location of a cross can be achieved with an accuracy of 0.03 -
0.05 pixel. Compression to 2 bit/pixel leads to 0.06 - 0.14 pixel; to I bit/pixel to 0.16 -
0.18 pixel; and 0.5 bit/pixel to 0.36 - 0.71 pixel.

-.. .*-

°• .

d •.%

':•:



-18-

Method Case Number of Without Least Squares With Least Squares
Targets RMS (pixels) RMS (pixels)

X__ Y I XY X Y I XY
Fourier Noiseless

F8 24 0.080 0.054 0.096 0.027 0.022 0.035
F2 24 0.095 0.093 0.133 0.049 0.042 0.065
F1 23 0.200 0.225 0.300 0.144 0.143 0.203
F.5 9 0.275 0.350 0.445 0.319 0.171 0.362

Noise
NF8 24 0.086 0.104 0.135 0.041 0.033 0.053
NF2 24 0.141 0.090 0.167 0.058 0.050 0.077
NFI 23 0.263 0.155 0.305 0.135 0.131 0.188
NF.5 .....-.-.

Moment Noiseless
M8 24 0.195 0.259 0.324 0.027 0.020 0.034
M2 24 0.224 0.299 0.374 0.037 0.037 0.052
M1 23 0.423 0.482 0.641 0.139 0.103 0.173
M.5 9 0.572 1.055 1.200 0.322 0.296 0.437

Noise
NM8 24 0.247 0.179 0.305 0.038 0.030 0.048
NM2 24 0.348 0.272 0.442 0.079 0.112 0.137
NMI 23 0.403 0.354 0.536 0.113 0.126 0.169
NM.5 9 0.774 0.815 1.124 0.237 0.670 0.711

Table 4. Summary of Fourier and Moment methods.

7. Conclusions and Recommendations

1) It is possible to locate a cross, with added noise, in a realistic digital aerial image
to an accuracy of 0.03 to 0.05 pixel.

2) Techniques of pattern recognition and feature extraction are capable of automati-

cally detecting and locating cross targets in digital aerial images.

3) The least squares algorithm, following the results from either the Fourier descrip-
tor or Moment algorithms, produces optimum cross positions.

4) Digital image compression causes image features, such as crosses to shift in loca-

tion. The methods devised here can quantify such shifts.

5) At low bit/pixel rates, features get distorted and therefore cannot be recognized.

This is a serious problem that will need further investigation.

6) Other digital image processing operations will be investigated in a manner similar

to compression.

7) It is hoped that the ability to quantitatively assess the effects of digital image pro-

cessing operations will lead to further study of the causes for such geometric
changes.

. -.-......... ... e........
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DETECTION AND SUB-PIXEL LOCATION OF OBJECTS
IN DIGITIZED AERIAL IMAGERY

Mark L. Akey and 0. R. Mitchell
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907, USA _

ABSTRACT 2.1. Detection
This paper deals with the detection and precision location Since the grey level of each cross is greater than that
of ground targets in the form of synthetic crosses on real of the cross's surrounding background, the cross can be
terrain data. Location of crosses using Fourier descrip- viewed as a local maximum. To implement local maxima
tors can be achieved to within 0.07 pixels. This method detection, two processes are needed. First, to insure that
is used to monitor the geometric distortion caused by true bright regions are detected and not those maxima .
compressing the data with the cosine transform. Results that are attributable to noise, a circular convolutional
show geometric "shifts" up to 0.5 pixels may occur after low pass filter is applied to the data.
compression. Mean and median filters are applied to syn- Second, a process must be developed to find the
thetic test data. These filters show a minimal amount of maxima. To implement this feature, each point in the
geometric "shift" in the presence of noise. The mean image is considered. At each point (called a hub point),
filter reduces location error to 0.025 pixels. A new circu- the image is observed in each of eight directions extend-
lar two-dimensional median filter is introduced and is ing radially away from the hub point. For a given direc-
shown to instill less geometric distortion than the conven- tion, if each grey level is lower than the hub point and if
tional rectangular median filter. at least one grey level is lower by a significant amount,

and if the distance from this point to the hub point is less
than a maximum distance, then the hub point is con-
sidered a local maximum in this direction. All eight

1. Introduction directions must be satisfied in this way for a hub point to
A long standing concern has been the ability to be considered as a two-dimensional local maximum.

extract accurate geometric information from digital
images. Recent work 11] has shown cross location meas- 2.2. Recognition
urements that are accurate to within one third of a pixel The recognition process accomplishes two tasks.
are humanly possible from appropriately digitized images. First, the process needs to discriminate buildings, rod
However, due to inconsistencies between different human intersections, and other physical objects from crosses
observers this margin of accuracy is all but lost. In aerial since all these objects may be two-dimensional local max-
imagery, the cross is commonly known either as a reseau ima. Second, given that the object is a cross, the process
mark where the cross is directly exposed on the film for must recognize it's approximate two-dimensional orienta-
registration purposes or as a fiducial mark where the tion, size, and location.
cross is an actual ground feature. The ultimate goal of
this work is to study the effects that common image pro- Recognition is accomplished with the use of Fourier
cessin techniques have on the metric fidelity of the descriptors. To obtain the Fourier descriptors of an
imasg techniques etuid; osine object, the o.riginal unfiltered image must be grey valueimage. Three different techniques are studied; cosine.-.
image compression, mean, and median filtering. In addi- thresholde?, to yield a binary image. If the threshold is
tion, the fidelity of the square two-dimensional median chosen correctly, the object will be segmented from the

scompared to a new circular median filter, background data. Typically, many thresholds are triedfilter is to successfully segment the data. A Fourier transform is .
21. Automatic Deteet~on, Recognition, and toes- applied to the contour or boundary of the segmentedto Auof C DoTaetscti, Robject to produce the object's Fourier coefficients. The

coefficients (descriptors) are normalized for comparison to
An algorithm is developed to detect, recognize, and the coefficients of a "true" cross. If the descriptors match

locate ground cross targets in digital aerial imagery. The those of a cross within a specified accuracy (typically
algorithm accomplishes these tasks by extracting three 90% or higher), the object is classified as a cross. If the
major features from the the ground data. Local grey descriptors do not match, another grey level threshold is
level maxima which correspond to possible cross targets selected for segmentation until the descriptors match or
serve as a detection feature. The Fourier descriptors of until all the possible thresholds are exhausted in which
the contour of these targets provide recognition of the case the object is rejected as a cross.
cross as well as approximate location, orientation, and The boundary function of an object can be expressed ','-
size of the cross. Finally, the two-dimensional moments as
determine an accurate location, orientation, size, and grey {t) = xL) + iylt) (I)
level for each cross. Additionally, a modified version of 14=-.'-"
the algorithm is developed which uses only the Fourier where x(t) and y(t) are the x and y position of the contour
descriptors in determining the final precision location, at time t. The boundary function is considered to be

complex to provide for changes in both x and y. The
total time to trace around the contour at a uniform speed

Supported in part by the U.S. Army Research Office. is one period T.
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Given that -y(t) is a continuous, bounded, periodic 2.3. Location
function, -ylt) can be expanded into a Fourier series 121, Two parallel schemes have been developed to accu-

t= ,.10  rately locate the crosses as well as determine orientation
1 e T (2) angle and cross grey level heights. Both schemes use the -

3=-, results provided by the detection and recognition routines
where previously discussed. . -'

T -- 't

-, 
T di (3) Location using Moments

In general, the cross' grey level heights (b, and b2)

A great deal of work has been concentrated on Fourier are distributed among neighboring pixels according to the
series expansion [31. location and orientation of the cross. Since the grey

For discrete images, the contours that are traced are values of the pixels hold much of this information, a pro-

polygons. Each polygon consists of linear increments in cess which uses the grey levels of the cross as well as the

time and position, and therefore is piece-wise continuous, general shape should do well in estimating location and

The Fourier coefficients are determined from these incre- oinao.A window of data is extracted from the original
ments by the direct Fourier transform (DFT). The image. The location of the center and the size of the
coefficients as given by the DFT are window is determined from the Fourier descriptor loca-

___ 2- , 0 moments of the window are calculated. For an image

f(x,y), the (p+q)th order moment 14) is given by

where t, a = t, t. 0, k is the number of sides on the M,= ffxy'(x,y)dxdy (9)
pogo, T= tThe normalized first order moment in x and in y respec-

tively determine the center of mass of Ox,y), i.e.,

Co =' + (V-) at, M01 ;,Y (10)

Since the cross is symmetric, this is the final estimate ofwhere-1. = I + P. the cross location. After the moments are translated to
If an eight-directional chain-code is used in this location, rotational moments are used to determine

representing the discrete contour, the implementation of the angle of the cross. To translate the original image
the DFT becomes relatively easy. A look-up table can be f(x,y) by an amount (a,b) the following transformation is
used and indexed by chain-code, performed on the original moments

Due to the four-fold symmetry and the concavity of P P
the cross, many of the Fourier coefficients are zero. In M -0 V t J1 a pb.( M)
fact, only the -7, -3, 1, 5, and 0 order coefficients have -=0.. rs

non-zero values among the first 8 harmonics. The zeroth Due to four-fold symmetry, the fourth-order rotational
order coefficient relates the position of the center of the moments must be used to determine the angle of orienta-
contour (cross). Few objects show four-fold symmetry tion. The rotational moments 141 can be obtained from
and those that do, such as square buildings, are not the original moments
nearly as concave as the cross. Thus, the Fourier descrip-
tors provide an excellent set of features for discerning F,4 = -i4M, 3 - M + i4Ms1 + (12)
crosses from other ground objects. The angle of orientation is

Additionally, the Fourier descriptors provide infor- 44(Mw -M s)
mation on orientation and size. Before direct comparison = = (13)
of the Fourier descriptors can be made, the coefficients k 4 M -6M, + Mo (
must be normalized with respect to orientation and size. Finally, the background grey level is determined by the
The combination of the first and minus third coefficient average grey level around the cross, not including the
yelds the angle of rotation with respect to the %-axis, cross, and the grey level of the cross is estimated by the

etermining the angle requires the use of the Fourier grey level at the center of the cross.
series properties. Since the cross is four-fold symmetric,
the next largest coefficient is e_. (e, is the largest). To Location using Fourier Descriptors
normalize the coefficients, both #,,' and €' must equal To determine accurate location and orientation of
zero, i.e., the cross, many grey level thresholds are used. Each grey

Se, e +o level threshold yields a contour and therefore an estimate
eel = e (6) of the cross's location and orientation. Of those thres-

holds that produce acceptable Fourier descriptor results, -
e = to + a . = -3to + a (7) only the best descriptor results are retained. Since the

Fourier descriptor error measures the match to an ideal
Solving for to and a using Eq. (18) and (19) yields cross, the error may be used as a confidence number.

The lower the error, the greater the confidence. This
t _s ) (8) confidence number is used as a multiplicative weight.

4 4 The location and angle of each contour is weighted by
this number and summed to obtain the final location and

Thus, a is the angle of orientation. And, simply the angle. This process gives surprisingly good results with
ranges in x and y on the contour determine an approxi- aler var ce thvn thrtobtind fro jus ier
matesmaller variance than that obtained from just one Fourierro"

descriptor result.
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The technique is remarkably similar to the moment 3.2. Geometric Effects of Mean and Median Filters
technique in one important way. The grey level moments To better isolate the effects of processing, new test
use a continuum of grey values summed according to the data is artificially generated with known noise statistics.
moment basis functions to produce the center of the The base image consists of 49 crosses with the aspect
cross. Likewise, the Fourier descriptors use a continuum ratio Ix7 oriented at random angles and placed at ran-
of grey level thresholds to produce different center of cop- dom sub-pixel locations on a flat field. The width of the
tour locations. However, only those Fourier descriptor* legs of each cross is set at 3 pixels, thereby making each
results which match a cross are kept. This selective pro- cross 21 pixels in length. This larger size is necessary to
cess removes those contours which are greatly effected by prevent the median filter from removing large portions of
noise. The grey level moments on the other hand cannot the crosses. Three additional images are created by
be manipulated in this way, and must use all grey values, adding varying amounts of independent zero-mean Gaus-

sian random noise to this base image. The standard devi-3. Experiments with Cross Data ation of the noise is set at 20%, 40%, and 60% of the
Two different sets of data have been used for the center step height (grey value) of the cross.

various experiments. Each is described briefly as well as On each of the above images, eight separate
the testing applied to each, processes are performed. These processes included 3 by 3

mean and median filters and circular mean and median
3.1. Geometric Effect of Cosine Compression filters with diameter 3. The above processes are repeated

A test image is obtained by generating cross targets using 5 by 5 windo-A. and diameters of 5 pixels. To the
on a digital image. This aerial image is from a rural authors' knowledge, the circular median filter is yet to be
Arizona area. A cross is generated by integrating over introduced in the literature. For the circular window,
that portion of the pixel which contains any part of the those pixels on the boundary are weighted according to
cross. The cross targets are then superimposed on the the amou" Z of pixel interior to the circle. This weight
digitized image. should signify the percentage of that pixel's grey value.

Twenty-four cross targets are randomly selected and However, rather than summing up the total weighted
placed on the image. Placement is done at an arbitrary pixel's grey value as in the mean operation, the grey
sub-pixel location. Cross sizes with aspect ratios of x7, values along with their respect weights are rank ordered
IxlO, and 1x13 are used. The aspect rtio relates the lowest to highest according to the grey value. As the
width of one leg of the cross to the length of the cross, grey values are ascended in the ranked order, a running
i.e., I unit to 10 units. The widths range from I pixel to sum of the area that each grey value represents is kept.
1.5 pixels. The crosses are arbitrarily rotated at various When the sum reaches 50% of the total circle area, the
orientation angles. Additionally, zero-mean Gaussian current grey value is the resulting median of the circular
random noise is added to the crosses with a standard window.
deviation similar to the standard deviation of the image To the four test images, the Fourier descriptor preci-
background around each cross. Two data sets are sion method is applied. This method is preferred over
created; one where a standard deviation of 25% of the the moment method due to it's superior performance on
background noise is added to the crosses to simulate the Arizona test set. Table 2 shows the precision result
fiducial marks and one where no noise is added to simu- for each noise case prior to any processing. The mean
late reseau marks. value is the average unsigned error in location. These

For each of the two Arizona test images, a two- statistics follow a Rayleigh distribution and are com-
dimensional adaptive cosine transform compression pletely characterized by the mean. Note, for the no noise
scheme [5) is applied. The resulting images are then case, the method does not give perfect locations.
reconstructed using 8, 2, 1, and 0.5 bits/pixel. For each
set, the grey value moment precision technique as well as Median Results
the Fourier descriptor precision technique is applied. Table 2 shows the result after processing the image
Table I shows the mean error in location of each with both the square and circular median filter of size 3
compressed image for both location methods. pixels. It should be noted that the zero noise case results

As expected, the greater the compression, the greater in only a minor shift in location for both cases. Since the
the error in location of the cross. It should also be noted median filter is known to remove corners from image
that for the case of 0.5 bit/pixel compression, many features some amount of distortion should be observed.
crosses are not recognized (10 crosses) due to the large However, due to the symmetry of the cross, the distortion
amount of distortion to the crosses. Many of these is symmetric over the entire cross. Therefore, no shift in
crosses are distorted due to the segmenting of the image location is apparent from the mean undirected error. For
into 16 by 16 sub-images, the typical size used in Cosine the 20% and 40% noise cases, the median filters improve
transform compression, the location results only slightly. However, the 60% casep. results in a marked reduction in the error.

Tablell] Mean location error in pixels from the grey Table 2 shows the location results from the square
level moment method and Fourier descriptor and circular median of size 5. Contrary to the size 3
method. Each method was applied to the case, there is a slight increase in location error over that
various cosine compressions of the Arizona of the non-filtered data. The window size is at times too
test data. large for the feature causing the median filter to remove

Compression No Noise 25% Noise the ends of the cross legs. Only in the highest noise case
(bits/pixel) Monts FD Moments FI does the median filter increase the accuracy of the

" O-.-- 0073 .241 Fourier descriptors, thereby outweighing the effects
8.0 0.255 0.073 0241 0.107 caused by distortion from the filter. Additionally, the cir-
2.0 0.315 0.107 0.325 0.132 cular median results in less error than the square median.
1.0 0.527 0.253 0.458 0.224 This can be attributed to the additional bias the square
0.5 0.0 0.470 0.8m 0.438 median has on orientation.
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Table[21 Mean location error in pixels for synthetic test image using
Fourier descriptor method. Square and circular median and
mean filter results are shown using window sizes of 3 and 5 pix-
els in the presence of various amounts of noise.

Before Median Mean
Noise Square Circular square Circular

30 x5 d=3 d=5 3x3 5x5 d=3 d=5

0% 0.061 0.078 0,091 0,078 0.081 0.026 0,043 0.026 0.033
20% 0.108 0.093 0.114 0.094 0.105 0.087 0,118 0.081 0.124
40% 0.207 0.188 0.255 0.184 0.239 0.184 0.258 0.185 0.250
60% 0.404 0 .249 0.359 0.242 0.304 0.220 0.300 0.2 14 0.279

In general, given that the feature is much larger than ACKNOWLEDGEMENTS
the window size of the filter, the median improves the
accuracy of the Fourier descriptor location result on noisy The work described in this paper has been supported by
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APPENDIX F

The Circular Median Filter

As more research is done in the study of geometric fidelity and how it is affected
by common digital processes, it becomes apparent that isotropic filters preserve this
fidelity much better than non-isotropic filters. It is thought that circular convolutional
windows will produce less distortion in terms of geometric accuracy. Thus, some
thought is directed toward the ability to modify existing rectangular window filters.

Due to the rather simple modification of the square mean filter to the circular
type, it seems that the modification of the square median filter should also be simple.
For the circular window, those pixels on the boundary are weighted according to the
amount of pixel interior to the circle. This weight should signify the percentage of that
pixel's grey value. However, rather than summing up the total weighted pixel's grey -:

value as in the mean operation, the grey values along with their respective weights are
rank ordered lowest to highest according to the grey value. As the grey values are
ascended in the ranked order, a running sum of the area that each grey value
represents is kept. When the sum reaches 50% of the total circle area, the current grey
value is the resulting median of the circular window.

Though the circular median retains its non-linear nature, it has no orientation bias
as does the square median. One disadvantage of the square median is that it "lops off"
grey level corners in the image. Unfortunately or not, this feature is also present in the
circular median. However, the circular median prefers no specific orientation for this to
occur. On the other hand, the square median is inconsistent in this response when the
corner is not aligned with the axes.
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